Какие продукты могут быть получены при взаимодействии
В развитии учения о растворах выдающаяся роль принадлежит работам Д. И. Менделеева. В результате тщательного изучения свойств водных растворов серной кислоты и этилового спирта и ряда других систем Менделеев установил, что между молекулами компонентов раствора происходит химическое взаимодействие и что это имеет важнейшее значение для свойств растворов. Этим открытием было положено начало химической теории растворов. Продукты взаимодействия растворенного вещества с растворителем называются сольватами, а в случае, когда растворителем является вода, — гидратами. Теорию растворов Менделеева называют поэтому сольватной или гидратной теорией растворов. [c.217]
Магнийорганические соединения. Представители данных соединений хорошо известны в органическом синтезе как реактивы Гриньяра — эфирные растворы продукта взаимодействия алкилгалогенида с магнием в среде эфира [c.590]
Данная глава посвящена рассмотрению свойств растворов неэлектролитов и главным образом изучению взаимодействия растворенных молекул с растворителем. Будут рассмотрены основы термодинамики растворов неэлектролитов, классификация растворов, состав образующихся в растворе продуктов взаимодействия и методы его определения, характер сил, обусловливающих образование этих соединений, свойства продуктов взаимодействия и методы их определения. [c.215]
Особенностью выполнения исследований является использование массивов справочных и других известных данных о термохимических свойствах неорганических веществ для последующего выявления различных коррелятивных связей и функций, а также моделей твердых идеальных растворов продуктов взаимодействия и методологии термодинамического моделирования, развитых нами ранее. Монография содержит информацию только о разработках авторов и не претендует на полный обзор состояния исследований в этом направлении в мире. В шести главах книги описаны процедуры выполнения исследований, приведены выявленные закономерности, численные зависимости пли методы расчета свойств. Всего представлено около 10 опробованных новых методов оценки температур конгруэнтного плавления для неорганических веществ. По нашим данным, погрешности при использовании этих методов не превышают погрешности определения указанных свойств с применением современных экспериментальных способов. [c.4]
Представляется необходимым пояснить содержание выявленных закономерностей оценки энергетики образования двойных оксидов при использовании представлений об оксидном идеальном растворе продуктов взаимодействия. Традиционно энергетика образования /-го двойного оксида в стандартных условиях представляется в виде [c.79]
Безводный трихлорид рутения образуется при выпаривании раствора продуктов взаимодействия четырехокиси рутения с HG1 и последующем высушивании остатка в токе сухого хлора при 600°С по способу, применявшемуся Эпштейном и Эллиотом при высушивании продажного трихлорида. [c.323]
Если по условиям переработки необходимо, чтобы в растворе полимера не содержался галогенводород, то обычно его переводят в нерастворимое (твердое или газообразное) соединение и удаляют тем или иным путем ( фильтрация, дегазация). Если же присутствие в растворе продукта взаимодействия галогенводорода с нейтрализующим веществом допустимо или даже желательно, то нужно получить соединение, хорошо растворимое в реакционной массе. Удаление продукта взаимодействия галогенводорода с нейтрализующим веществом из вязкого раствора полимера связано иногда с определенными техническими трудностями. Поэтому предложен ряд приемов, облегчающих решение этой задачи [2, 30]. Эти приемы сводятся к проведению синтеза полиамида в две стадии с удалением продукта нейтрализации после первой стадии, когда количество выделившегося галогенводорода велико, а вязкость раствора незначительна, и к разбавлению раствора полимера легколетучим растворителем. [c.29]
Отвердитель (аддукт) АЭ-4 (ТУ 6-10-964—70) — раствор продукта взаимодействия эпоксидной смолы Э-40 с гексаметиленди-амином в летучих органических растворителях, содержит 3,5— 4,5% (масс.) аминогрупп. Имеет сравнительно большую молекулярную массу, малолетуч и поэтому малотоксичен. [c.494]
Окраска раствора Цвет флуоресценции раствора Продукт взаимодействия Извлечение комплекса Цвет экстракта в отсутствие катиона Цвет экстракта в присутствии катиона Флуоресценция экстракта в отсутствие катиона [c.69]
ЭЭ-42-3 представляет собой 50%-ный раствор продукта взаимодействия смолы Э-44 средней молекулярной массы с жирными кислотами льняного масла. [c.77]
Сорбция платины, родия и иридия из нитритных растворов продуктами взаимодействия сополимеров стирола с серой [c.228]
В связи с этим, на наш взгляд, предпочтительнее применять жидкий катализатор. Последний может быть приготовлен взаимодействием борной кислоты (1 г-мол.) с избытком метилдихлорсилана (6 г-мол.) при атмосферном давлении. Смесь нагревается с обратным холодильником при температуре кипения в течение 50 часов При этом образуется раствор продуктов взаимодействия борной кислоты с метилдихлорсиланом в избытке последнего. Реакция в общем виде может быть выражена схемой [c.87]
Другим нежелательным явлением, которое часто сопровождает процессы очистки газов методом хемосорбции, является выпадение из раствора продуктов взаимодействия примесей, находящихся в очищаемом газете компонентами рабочего раствора, что может приводить к зарастанию рабочих элементов сорбционного аппарата, забиванию форсунок, коммуникаций и др. [c.18]
Ой-фаз. Ранее, когда термохимические свойства 123-0,-фазы практически были неизвестны, мы применили модель идеальных растворов продуктов взаимодействия (ИРПВ) при термодинамическом моделировании (ТМ) для определения условий синтеза фазы 123-0, [47]. Составляющими раствора были взяты, в частности, СпзО, СиО и Си,Оз. Для Си Оз термохимические свойства оценены расчетным путем [47], но некоторые из них, в частности СЭО, недостаточно корректно. После ревизии свойств Си,Оз [50] появилась возможность подробнее изучить с применением модели ИРПВ твердые растворы оксидов У,Оз, ВаО и Си,0, СиО, Си,Оз, эквивалентные по содержанию (или по соотношению) атомов У, Ва и Си сверхпроводникам (СП) в системе УВаСиО. [c.39]
В [43—45] для расчета стандартных энтальпий образования, энтропий и теплоемкостей сверхпроводников в системах V— Ва—Си—О [43, 44] и —Ва—Са—Си—О [45] предложена методика, включающая использование модели идеальных растворов продуктов взаимодействия (ИРПВ) [53] и возможностей термодинамического моделирования (ТМ) [51, 52]. В данном разделе этот подход получил дальнейшее развитие при сравнении СЭО пар /двойной оксид (далее — раствор/оксид ) в условиях равенства или близости нх атомных составов. Исследовано свыше 100 пар раствор/оксид , представляющих около 90 псевдобинарных систем из оксидобразующих элементов I—УШ-й групп и 2—6-го периодов периодической системы. Выявлены как тождества, так и различия между СЭО групп двойных оксидов и энергетическими характеристиками эквивалентных по составу оксидных растворов, образованных элементами разных групп и периодов периодической системы предложены способы оценки СЭО двойных оксидов с учетом этой классификации на основе данных ТМ о составе растворов и величин СЭО структурных составляющих растворов (простых оксидов) рекомендованы системы Эл,—Эл,—О , в которых можно использовать предложенные варианты расчетных методик для оценки неизвестных и коррекции известных значений СЭО бинарных оксидов, образующихся в этих системах. [c.68]
Таким образом, при использовании модели идеальных растворов продуктов взаимодействия [123], методологии термодинамического моделирования [51], заданных условий равенства (близости) атомных составов пар раствор/двойной оксид сконструирован метод расчета двойных оксидов. Для его проверки выполнен сравнительный анализ известных и рассчитанных величин для примерно 100 двойных оксидов, представ-ЛЯЮ1ЦИХ около 90 систем Эл,—Эл,—О из элементов I—VIII групп и 2—б-го периодов периодической системы. Расчетные и литературные величины двойных оксидов согласуются в [c.81]
Для каждого оксида А В,,0, с известными характеристиками S24S и JSjijs задавали состав исходной системы а молей элемента A + h молей элемента В -t- 20 молей О, в целях последующего термодинамического моделирования. Все конденсированные фазы системы считали составляющими идеального раствора продуктов взаимодействия [123], т. е. составляющими раствора были все известные простые оксиды А, 0 и В,,О,, в системах А—О и В—О. С использованием программного комплекса АСТРА.4, баз данных АСТРА.BAS [52] и A TPA.OWN [1] выполняли ТМ системы заданного состава при 300—3500 К с шагом по температуре 50—100° при общем давлении 10″ Па. В результате расчетов определяли при каждой температуре число [c.81]
В последние годы нашел применение сорбционно-фотометрический метод аналюа. Он включает предварительное сорбционное концентрирование определяемого соединения, сопровождающееся появлением или изменением окраски сорбента, и последующее измерение его диффузного отражения. Получить окрашенные соединения на поверхности (ниже выделены курсивом) можно сорбцией предварительно синтезированных в растворах продуктов взаимодействия определяемого соединения с подходящими фотометрическими реагентами, например, по катионообменному механизму [c.322]
ВИИИНП-715 — 50%-й масляный раствор продукта взаимодействия ди(алкилфенил)дитиофосфорной кислоты с диэтилентриамином. Применяют в качестве беззольной антиокислителъной, антикоррозионной и антифрикционной присадки к смазочным маслам. Вырабатывают по ТУ 38.1011226-89. [c.952]
Часто применяют смеси с фенольно-формальдегидныл1и смолами. Например, раствор плавкой фенольно-формальдегидной смолы в фурфуроле применяют для пропитки отверждение осуществляют нагреванием. Кроме фурфурола можно вводить основания. Например, 200 ч. новолака (фенольного или крезольного) расплавляют при 140—150° и смешивают с 6% стеариновой кислоты и 16 ч. Са(0Н)2 нагревают 15 мин. и добавляют 30 ч. фурфурола. Можно также сплавлять новолак с фенольно-фурфурольной смолой, полученной в щелочной среде, или растворять продукт взаимодействия фенола и гекса в щелочи, а затем добавлять фурфурол. Раствор применим для покрытий и пропитки. Фенольно-формальдегидный новолак кислой конденсации после нейтрализации можно смешивать с фурфуролом смесь долго сохраняется неизмененной, но немедленно отвердевает после добавления кислоты [c.451]
Новый способ применения водного раствора продукта взаимодействия сополимера стирола (или алкилстирола галоидозамещенного стирола) и малеинового ангидрида или его неполного эфира с [c.50]
Молярный коэффициент погашения раствора продукта взаимодействия бихромата с кармоазином при Хмакс равен 1-10 , что показывает достаточную чувствительность реакции. [c.164]
При действии перекиси водорода на водный раствор продукта взаимодействия пятиокиси ниобия с едким кали получают пе рнио- [c.252]
Оптические плотности растворов продуктов взаимодействия МФП-АНИФЕСКа с ионами лития и натрия (X 550 нм, р = 0,95) [c.144]
Смола ВАМС (ТУ 6-10-12-31—74) — раствор продукта взаимодействия гексаметилолмеламина с сополимером стирола, бутил-акрилата и метакриловой кислоты в смеси (1 1) бутилцеллозольва и бутанола. [c.139]
В то время как полиамидокис-лоты на основе пиромеллитового бр,кгс/см диангидрида и ароматических диаминов в процессе синтеза в амидных растворителях образуют гомогенные растворы, продукт взаимодействия с алифатическими диаминами выпадает из раствора растворение происходит только после интенсивного пере- [c.673]
Раствор собисминола представляет собой раствор продуктов взаимодействия висмутата натрия, три-изопропаноламина и пропиленгликоля. В 1 им раствора содержится 20 мг висмута. [c.507]
Пр1 смещении 63 г глицид. )го эфира глицерина (из 1 моля глицерина I 3 молей эпихлоргидрина), 10 г 40% раствора продукта взаимодействия п-то-. уолсульфамида и формальдегида с 4 г комплекса трехфтористого бора и диэти-. итриамина получают стабильный лаковый раствор, покрытие которым гзар кдается при 150 за полчаса. [c.598]
Система иОг—ВаО. Согласно Лангу и др. [10] в системе иОг—ВаО образуется твердый раствор на основе иОз и новая фаза — химическое соединение ВаиОз, с решеткой псевдокубического перовскита, а = 4,396 А, на основе которого образуется твердый раствор протяженностью до 75% ВаО. В работах [53, 54] было установлено, что ВаО в иОз не растворяется. Продукты взаимодействия иОа с ВаО проявляют большое сродство к кислороду, источником которого является карбонат бария, и состав окислов заметно сдвигается в область тройной системы иОг — иОз — ВаО даже при синтезе их в вакууме. Окислы конденсированной системы иОг—ВаО могут быть получены в восстановительной [c.144]
Эмаль В-ЛС-1162 — суспензия двуокиси титана рутильной формы в водоразбавляемой смоле ВАМС, представляющей собой раствор продукта взаимодействия гекса.метилолмеламина с сополимером стирола, бутилакрилата и метакриловой кислоты в смеси бутилацетата и бутилового спирта (1 1). Выпускается белого цвета. [c.183]
Утром меня разбудил телефонный звонок. Звонила моя ученица Лена Д. Со слезами в голосе она начала говорить, что ЕГЭ по химии точно завалит, потому как даже «такая простая и понятная 35 задача» может включать фишку на выход реакции, не считая кучи других «садистских приколов». Лена скинула мне ВК условие злополучной 35-й задачи: «При гидратации 31,50 г этиленового углеводорода образовалось 23,76 г органического вещества. Выход продукта составил 60 %. Определите молекулярную формулу углеводорода и установите его структуру, если известно, что при его жёстком окислении перманганатом калия образуются кетон и кислота. Напишите уравнение реакции углеводорода с водой, в уравнении изобразите структурные формулы органических веществ»
В своей практике я, действительно, столкнулась с парадоксом, когда очень толковые ребята, хорошо знающие химию, жутко боятся элементарных расчетов на степень превращения вещества и выход продукта реакции. Их начинает терзать сомнение: «А справлюсь ли я на ЕГЭ?!» Такие переживания могут зайти далеко и перерасти в никому не нужную депрессию. Думаю, вы тоже сталкивались с аналогичными проблемами. Что делать? Я предлагаю все трудности преодолевать вместе. Вначале мы повторим тему «Выход продукта реакции», поучимся решать задачи, обязательно разберем 35-ю задачу, предложенную моей ученицей, а в конце статьи я расскажу вам секретное упражнение, которое нужно выполнять всякий раз, когда вы начинаете сомневаться в собственных силах и способностях. Упражнение так и называется «У меня все получится!». Итак, поехали!
Выход продукта реакции (выход реакции) — это коэффициент, определяющий полноту протекания химической реакции. Он численно равен отношению количества (массы, объема) реально полученного продукта к его количеству (массе, объему), которое может быть получено по стехиометрическим расчетам (по уравнению реакции).
Решим задачи на выход продукта реакции, используя Четыре Заповеди. Каждое действие обводится зеленым овалом. Читайте внимательно и обязательно записывайте решение каждой задачи. После проработки статьи попробуйте самостоятельно решить все разобранные задачи.
Задача 1
При действии алюминия на оксид цинка массой 32,4 г получили 24 г цинка. Определите выход продукта реакции
1) Первая Заповедь. Выписать данные задачи в разделе «Дано»
2) Вторая Заповедь. Написать уравнение реакции
Повторим теорию химии. Способ восстановления металлов алюминием — алюмотермия. Следует помнить: металлы, стоящие в ряду активности левее (более активные) восстанавливают металлы, стоящие правее, из расплавов оксидов или растворов солей
Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→Zn→Fe→Cd→Co→Ni→Sn→Pb→(H)→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au
3. Третья Заповедь. Сделать предварительные расчеты по данным условия задачи и по уравнению реакции
В условии задачи представлены данные по одному из реагентов (оксиду цинка) и по одному из реально полученных продуктов (цинку). Составляем два досье, в каждом — масса, молярная масса, количество вещества (моль). Для цинка (продукт), масса и количество вещества — практические, т.к. продукт был получен реально.
Теоретическое значение продукта рассчитываем по уравнению реакции. Точка расчета — количество вещества реагента (оксида цинка). Расчеты выполняем на основании закона кратных отношений по схеме: точку расчета делим на коэффициент при этом веществе, умножаем на коэффициент при искомом веществе и получаем результат. Выписывать отдельно пропорцию для расчетов не обязательно. Это — Легкие Расчеты по уравнениям реакций, которые не противоречат закону кратных отношений, но значительно упрощают решение задач по химии.
4. Четвертая заповедь. Составить алгоритм решения задачи.
Формулизируем вопрос задачи «Определите выход продукта реакции», — записываем соответствующую формулу и анализируем ее компоненты.
Подробно разберем решение обратной задачи: по известному выходу реакции определим неизвестное значение реагента или продукта.
Задача 2
Определите массу оксида алюминия, которая может быть получена из 23,4 г гидроксида алюминия, если выход реакции составляет 92% от теоретически возможного.
1) Первая Заповедь. Выписать данные задачи в разделе «Дано».
2) Вторая Заповедь. Написать уравнение реакции.
Небольшой экскурс в теорию химии. Многие нерастворимые в воде гидроксиды разлагаются при нагревании. Продукты разложения — оксиды соответствующих металлов и вода.
3. Третья Заповедь. Сделать предварительные расчеты по данным условия задачи и по уравнению реакции
Составляем досье на реагент (гидроксид алюминия) — определяем его молярную массу и количество вещества (моль). По уравнению реакции рассчитываем теоретическое количество продукта (оксида алюминия). Расчеты выполняем на основании закона кратных отношений по схеме: точку расчета делим на коэффициент при этом веществе, умножаем на коэффициент при искомом веществе и получаем результат.
4. Четвертая заповедь. Составить алгоритм решения задачи.
Формулизируем вопрос задачи «Определите массу оксида алюминия», т.е. записываем формулу расчета массы, которая для нас, как для химиков, должна быть представлена произведением количества вещества на молярную массу. Анализируем компоненты формулы: молярную массу определяем по таблице Менделеева, количество вещества (практическое) рассчитываем по формуле выхода реакции.
Решим на закрепление еще несколько обратных задач с выходом реакции.
Задача 3
Карбонат натрия взаимодействует с соляной кислотой. Вычислите массу карбоната натрия для получения оксида углерода (IV) массой 56,1 г. Практический выход продукта 85%.
Задача 4
При действии оксида углерода (II) на оксид железа (III) получено железо массой 11,2 г. Найдите массу использованного оксида железа (III), если выход реакции составляет 80%.
Задача 5
При взаимодействии железа с хлором получено 10 г соли, что составляет 85% от теоретически возможного. Сколько граммов железа было взято для реакции с хлором?
В этой статье я не буду разбирать пошагово 35-ю задачу ЕГЭ, предложенную моей ученицей. На фото — подробное решение. Тот, кто уже решал аналогичные задачи, поймет без дополнительных объяснений. Для всех остальных — обязательно будем наслаждаться анализом этой задачи (и не только этой) в следующей статье. Обещаю ДРАЙВ!
Задача 35 ЕГЭ (восстановлена по памяти моей ученицы)
При гидратации 31,50 г этиленового углеводорода образовалось 23,76 г органического вещества. Выход продукта составил 60 %. Определите молекулярную формулу углеводорода и установите его структуру, если известно, что при его жёстком окислении перманганатом калия образуются кетон и кислота. Напишите уравнение реакции углеводорода с водой, в уравнении изобразите структурные формулы органических веществ
Вернемся к проблеме, которую я затронула в начале статьи. Что делать, если резко упала самооценка, ты чувствуешь себя полным идиотом и боишься не справиться с трудными заданиями ЕГЭ? Все очень просто — выполни секретное упражнение «У меня все получится!» Я подсмотрела его на просторах Интернета (автора не знаю) и модифицировала это упражнение под себя и своих учеников:
1. Сядь в спокойной обстановке, закрой глаза, успокой дыхание. Сосредоточься на своей цели. Представь, что у тебя уже все получилось и ты достиг всего, к чему стремился.
2. Сожми ладони вместе перед собой и прижми их к груди. Обратись к Высшему Разуму (как ты его себе представляешь — Бог, Вселенная, Космос, Мир, Природа) с просьбой реализовать твою цель и мечты.
3. Побудь в таком состоянии несколько минут, затем встань, расправь плечи и стряхни с себя все плохое.
В конце статьи хочу привести цитату из стихотворения американского поэта Эдгара Геста, который был очень популярен 100 лет назад:
«И ты не верь тому, кто скажет: «Это слишком сложно!»
Не слушай тех, кто будет утверждать, что это невозможно,
Не бойся трудностей – скорей берись за дело,
Гони сомненья прочь – к мечте иди решительно и смело!»
Вы готовитесь к ЕГЭ и хотите поступить в медицинский? Обязательно посетите мой сайт Репетитор по химии и биологии https://repetitor-him.ru. Здесь вы найдете огромное количество задач, заданий и теоретического материала, познакомитесь с моими учениками, многие из которых уже давно работают врачами. Звоните мне +7(903) 186-74-55. Приходите ко мне на курс, на Мастер-классы «Решение задач по химии» — и вы сдадите ЕГЭ с высочайшими баллами, и станете студентом престижного ВУЗа!
PS! Если вы не можете со мной связаться из-за большого количества звонков от моих читателей, пишите мне в личку ВКонтакте, или на Facebook. Я обязательно отвечу вам.
Репетитор по химии и биологии кбн В.Богунова