Какие питательные вещества содержатся в растениях
Вот список всех питательных веществ, которые необходимы растению для правильного роста:
азот, фосфор, калий, кальций, магний, сера, хлор, медь, марганец, железо,
бор, молибден, цинк, углерод, водород, кислород.
Чтобы понять, как растут растения, и как мы можем помочь им стать лучше, мы должны понять, что им нужно для роста.
В этой статье мы коснемся всего, что нужно растению с точки зрения питания. Итак, начнем.
Удобрение – это больше, чем N-P-K
Все мы знаем о важности хорошего удобрения для растений, садов и газонов. Так же, как животные и люди, растения должны иметь правильное питание, если они должны быть в лучшей форме. Большинство людей знают о цифрах «N-P-K», напечатанных на всех мешках с удобрениями. Они представляют собой процентное соотношение азота, фосфора и калия (иногда называемого поташ), содержащихся в этом конкретном удобрении.
Например, удобрение 10-10-10 содержит 10% азота, 10% фосфора и 10% калия. И именно поэтому 100 фунтов 10-10-10 это все равно, что 200 фунтов 5-5-5. Нет разницы.
Давайте кратко рассмотрим, что означают эти цифры и важность каждого элемента.
Основные питательные элементы
Азот (N)
Симптомы дефицита азота у растений
Азот является первым и в какой-то степени главным питательным веществом для сильного, энергичного роста, темно-зеленых листьев и фотосинтеза. Растения, которые являются почти полностью листьями, такие, как газонные травы, пшеница, овес, мелкие зерновые культуры и травы для гольфа, нуждаются в большом количестве азота. Первая цифра в удобрениях (N) для этих и других культур должна быть особенно высокой, особенно для травы, так как она должна постоянно обновляться из-за частого скашивания.
Покупая удобрения для трав, ищите формулу, которая начинается с очень большой «первой цифры» в N — P — K. Часто используется 30 — 0 — 0, но можно использовать любую комбинацию с большой «первой цифрой».
Просто помните, что 100 фунтов 30-0-0 это то же самое, что и 200 фунтов 15-0-0. Даже если бы вы выбрали 10-10-10, вы могли бы получить те же самые 30 фунтов фактического азота, применяя 300 фунтов. Но с 10-10-10 вы также будете вносить 30 фунтов фосфора и 30 фунтов калия. Вероятно, это будет слишком много для травы.
Фосфор (P)
Дефицит фосфора на листе томата
Фосфор используется растениями в основном для роста и развития корневой системы. Цветы, которые хорошо обеспечены фосфором, будут иметь более пышное цветение, а плоды созревают лучше и быстрее. Фосфор очень важен для цветочных луковиц, а также для многолетних растений и недавно высаженных деревьев и кустарников. Поскольку деревьям и кустарникам не нужно столько азота, сколько траве и листовым овощным культурам, небольшую первую цифру и большую вторую часто можно увидеть в удобрениях, предназначенных для этих растений и кустарников.
Калий (К)
Симптомы дефицита калия
Калий является общим питательным элементом для всех растений, улучшая общее состояние и силу растения. Он улучшает способность растения выдерживать экстремальные температуры и, в меньшей степени, стресс от засухи. Калий также помогает растениям сопротивляться болезням.
Поскольку в большинстве почв имеется некоторое количество доступного калия, третья цифра иногда меньше первых двух. Тем не менее, важно отметить, что, если в почве нет доступного калия, меньшая третья цифра может быть нежелательной.
Вторичные питательные элементы
Кальций (Ca)
Дефицит кальция на новом листе
Кальций важен для общей растительной энергии и способствует хорошему росту молодых корней и побегов. Кальций также помогает строить клеточные стенки. По мере ослабления клеток сосудистая система растения начинает разрушаться, уменьшая поглощение всех основных элементов. Симптомы появляются сначала на растущих кончиках побегов и корней.
Кальций является неподвижным элементом, то есть, когда есть дефицит, растение не может перемещать кальций из более старых листьев в более молодые. Новый прирост на верхушках и края листьев начинает увядать и отмирать, а новые листья часто деформируются.
Магний (Mg)
Симптомы дефицита магния
Магний помогает регулировать поглощение других питательных элементов и способствует образованию семян. Поскольку он содержится в хлорофилле, он также важен для темно-зеленого цвета растений и для способности растения производить продукты из солнечного света.
Магний необходим для образования сахаров, белков, масел и жиров, регулирует поглощение других питательных веществ (особенно фосфора), является компонентом хлорофилла и влияет на передвижение фосфора.
Симптомы дефицита заключаются в пятнистом пожелтении между прожилками более старых листьев, тогда как прожилки остаются зелеными. Желтые участки могут стать коричневыми и отмереть. Пожелтение может также произойти на более старых листьях. Листья могут стать красновато-фиолетовыми из-за низкого метаболизма фосфора, а также часто встречается сокращение производства семян.
Дефицит наиболее вероятен на выщелоченных песчаных почвах и там, где были применены высокие уровни натрия и калия.
Газон: зеленые или желто-зеленые полосы, которые впоследствии становятся вишнево-красными. Старые листья поражаются первыми. Увеличиваются зимние повреждения.
Широколиственные: листья тонкие, хрупкие и рано опадают. На более старых листьях могут наблюдаться междужилковые и краевые хлорозы, покраснение более старых листьев, с междужилковым некрозом позже, за которым следует осыпание листьев. Стремительный рост не снижается до тех пор, пока дефицит не станет серьезным. Урожай плодов снижается при серьезном дефиците; яблоки могут осыпаться преждевременно.
Хвойные: кончики иголок оранжево-желтые, иногда красные. У молодых растений первоначальные иголки остаются сине-зелеными, а у старших растений симптомы проявляются в первую очередь на старых иголках и нижнем ярусе. У пораженных иголок переход к зеленому может быть резким.
Сера (S)
Дефицит серы на кукурузе
Сера помогает поддерживать темно-зеленый цвет, одновременно стимулируя более интенсивный рост растений. Сера необходима для производства хлорофилла. Она столь же необходима, как и фосфор, и является весьма важным элементом.
Что делает сера для растений? Сера в растениях помогает формировать важные ферменты и способствует образованию растительных белков. Она необходима в очень малых количествах, но недостатки могут вызвать серьезные проблемы со здоровьем растений и снижение жизнеспособности. Растениям требуется только 10-30 фунтов серы на акр. Сера также действует как почвенный кондиционер и помогает уменьшить содержание натрия в почвах.
Сера в растениях является составной частью некоторых витаминов и важна для того, чтобы помочь придать аромат горчице, луку и чесноку. Сера, полученная из удобрений, помогает в производстве масла из семян, но может накапливаться в песчаных или истощенных слоях почвы. Дефицит серы в почве встречаются редко, но имеет тенденцию встречаться там, где внесение удобрений является обычным делом, и почвы не промываются должным образом.
Микроэлементы
Мы рассмотрели основные и вторичные элементы, которые нужны растениям для правильного развития. Однако, не делайте ошибку, думая, что другие необходимые элементы считаются само собой разумеющимися. Наоборот! Так называемые «микроэлементы» могут иметь гораздо большее влияние на рост растений, чем просто «микроэффект».
На одной ферме было несколько участков с чрезвычайно низким содержанием марганца. Пока проблема не была устранена, растения сои полностью выпали в этих местах. Это вряд ли «микро» проблема, когда ваш доход зависит от сои. Давайте рассмотрим остальные элементы, необходимые для обеспечения всего, что нужно растению.
Бор (B)
Как дефицит бора влияет на растение с течением времени
Бор способствует развитию клеток и помогает регулировать метаболизм растений. Это микроэлемент, необходимый в очень малых количествах, и существует ограниченный диапазон безопасности при применении бора, поскольку может возникнуть токсичность при чрезмерном внесении.
Бор занимает важное место в питании растений. Он необходим для синтеза белка, развития клеточных стенок, углеводного обмена, транслокации сахаров, регуляции гормонов, прорастания пыльцевых зерен и роста пыльцевой трубки, завязи плодов и развития семян. Бор является мобильным и легко вымывается в песчаных почвах. Регулярные подкормки бором необходимы для многих растений, но только в небольших количествах. Токсичность бора будет возникать, если этот элемент будет внесен чрезмерно.
Хлор (Cl)
Симптомы дефицита хлора
Хлор участвует в фотосинтезе. Хлориды необходимы для газообмена, фотосинтеза и защиты растений от заболеваний. Когда поры листа растения, называемые устьицами, открываются и закрываются, что делает возможным обмен газами, у растения наблюдается увеличение калия. Последующее увеличение хлоридов уравновешивает положительный заряд калия, чтобы предотвратить повреждение растений. Обмен газов между растением и окружающей средой имеет решающее значение для фотосинтеза. Дефицит хлора ингибирует фотосинтез, угрожая здоровью растений.
Медь (Cu)
Дефицит меди у растений рапса
Медь чрезвычайно важна для питания растений, хотя бы потому, что она способствует образованию хлорофилла. Растениям не нужно много меди, но если они не получают ее совсем, результаты могут быть катастрофическими.
Она активизирует ферменты в ваших растениях, которые помогают синтезировать лигнин. Это также часть процесса фотосинтеза. Кроме того, это ключ к аромату у некоторых видов овощей и цвету у некоторых типов цветов.
Медь неподвижна в растениях, поэтому, если они испытывают дефицит меди, то это, скорее всего, проявится на более молодом приросте. Новые листья приобретают чашевидную форму, и вы заметите хлороз между прожилками. Если это серьезный недостаток, небольшие участки листьев отмирают, и они могут завянуть и опасть.
Междоузлия будут все короче и короче, и ваше растение будет иметь приземистый вид.
Железо (Fe)
Железо принимает участие в производстве хлорофилла и других биохимических процессах. Это питательный элемент, в котором нуждаются все растения. Многие из жизненно важных функций растения, таких, как производство ферментов и хлорофилла, фиксация азота, развитие и обмен веществ зависят от железа.
Без железа растение просто не может функционировать так, как должно.
Симптомы дефицита железа у растений
Пример хлороза листьев в результате дефицита железа
Наиболее очевидный симптом дефицита железа у растений обычно называют хлорозом листьев. При этом листья растения желтеют, но прожилки листьев остаются зелеными.
Как правило, хлороз листьев начинается на верхушках нового прироста на растении и, в конечном счете, продвигается к более старым листьям, поскольку дефицит становится больше.
Другие признаки могут включать слабый рост и потерю листьев, но эти симптомы всегда будут сочетаться с хлорозом листьев.
Марганец (Mn)
Симптомы дефицита марганца
Марганец необходим для производства хлорофилла.
Марганец и магний
Необходимо отметить разницу между магнием и марганцем, поскольку некоторые люди склонны путать их. Хотя и магний, и марганец являются важными элементами, они обладают очень разными свойствами.
Магний входит в состав молекулы хлорофилла. Растения, лишенные магния, станут бледно-зелеными или желтыми. Растение с дефицитом магния покажет признаки пожелтения сначала на более старых листьях в нижней части растения.
Марганец не является частью хлорофилла. Симптомы дефицита марганца удивительно похожи на симптомы дефицита магния, потому что марганец участвует в фотосинтезе. Листья становятся желтыми, и есть также междужилковый хлороз.
Однако, марганец менее подвижен в растении, чем магний, так что симптомы дефицита появляются сначала на молодых листьях. Всегда лучше сделать анализ, чтобы определить точную причину симптомов.
Другие проблемы, такие, как дефицит железа, нематоды и гербицидное повреждение также могут привести к появлению желтых листьев.
Молибден (Mo)
Симптомы дефицита молибдена на листьях цветной капусты
Молибден помогает растениям потреблять азот. У небобовых культур (например, цветная капуста, томат, салат, подсолнечник и кукуруза) молибден позволяет растению использовать нитраты, извлекаемые из почвы.
Когда растение испытывает недостаток молибдена, нитраты накапливаются в листьях, и растение не может использовать их для производства белков. В результате растение становится чахлым, с симптомами, сходными с симптомами дефицита азота. В то же время края листьев могут становиться обожженными за счет накопления неиспользованных нитратов.
У бобовых, таких, как клевер, фасоль и горох, молибден выполняет две функции:
1. Разрушает все нитраты, поглощенные из почвы – молибден используется так же, как и у небобовых.
2. Помогает в фиксации атмосферного азота корневыми клубеньковыми бактериями. Бобовые больше нуждаются в молибдене для фиксации азота, чем для использования нитратов.
Цинк (Zn)
Симптомы дефицита цинка
Цинк активирует ферменты и участвует в образовании гормонов. Он используется листьями и необходим бобовым для формирования семян. Функция цинка заключается в том, чтобы помочь растению производить хлорофилл.
Листья обесцвечиваются, когда в почве недостаточно цинка, и рост растений замедляется. Недостаток цинка вызывает тип обесцвечивания листьев, называемый хлорозом, при котором ткань между прожилками желтеет, а сами прожилки остаются зелеными. Хлороз при дефиците цинка обычно затрагивает основание листа около стебля. Сначала хлороз появляется на нижних листьях, а затем постепенно перемещается вверх по растению.
В тяжелых случаях верхние листья становятся хлоротичными, а нижние листья становятся коричневыми или фиолетовыми и погибают. Когда на растениях проявляются такие серьезные симптомы, лучше их удалить и пересадить заново, с предварительным внесением удобрений.
Если взглянуть на растение, трудно сказать, в чем разница между дефицитом цинка и недостаточностью других питательных микроэлементов, потому что все они имеют похожие симптомы.
Основное различие заключается в том, что хлороз из-за дефицита цинка начинается на нижних листьях, а хлороз из-за нехватки железа, марганца или молибдена начинается на верхних листьях.
Единственный способ подтвердить ваше подозрение на дефицит цинка — это сделать анализ вашей почвы.
Как проверить свою садовую почву
Теперь должно быть очевидным, что растения – это фактически миниатюрные химические заводы, которые требуют строгого баланса между основными, вторичными и микроэлементами.
И они будут плохо работать, если эти химические питательные вещества не находятся в правильном балансе. Возникает очевидный вопрос…
Как я узнаю, как удобрять мой сад?
Обычный человек не может ответить на этот вопрос. Хотя, это совсем не сложно. Многие лаборатории предлагают почвенные исследования, которые могут точно определить, что нужно для любого сада, и даже дать свои рекомендации для конкретных культур.
Итак, чтобы подготовить свой сад, газон или ферму к новому сезону, сделайте следующее:
Возьмите пробы почвы. Вам понадобится от 1/2 до 1 пинты (примерно от 0,25 до 0,5 л) почвы на пробу. Не берите для отправки одну пробу с одного места в своем саду. Возьмите несколько проб, чтобы получить объединенную пробу по всей площади.
Отправьте пробу в сертифицированную и авторитетную лабораторию для получения рекомендаций. Всегда есть формы, которые нужно заполнить, поэтому, сначала свяжитесь с лабораторией по вашему выбору, чтобы получить правильные формы.
Заполните формы очень конкретно, указав, какие культуры вы собираетесь выращивать, какие-либо известные проблемы предыдущих лет, любые проблемы, которые у вас есть.
Когда получите готовый анализ, вам может быть трудно его читать и интерпретировать, поэтому, никогда не стесняйтесь снова обращаться в лабораторию со своими вопросами.
Внесите именно то, что рекомендуется. Вы должны сделать это как можно раньше весной, потому что внесенные питательные вещества не будут доступны для растений до тех пор, пока они не подвергнутся определенным химическим реакциям в почве. Раньше лучше.
Ваша почва нуждается в чем-то, но без этого важного анализа почвы вы никогда не узнаете, в чем. С его помощью вы можете рассчитывать на лучший сад в вашей жизни.
Существуют удобрения, которые содержат все элементы — основные, вторичные и микроэлементы, необходимые для вашего сада или газона. Никогда не сажайте сад, используя удобрение, которое содержит только «большую тройку» цифр N-P-K на этикетке. Вместо этого используйте удобрения, которые содержат все питательные вещества. И ваш сад всегда будет выглядеть потрясающе.
Инга Костенко, Mivena, Украина
Анна Устименко, Клуб Sirius Agro Plant
Англ. вер.: Рэнди Уильямс (RandyWilliams), фермер
Главными элементами питания растений являются углерод, кислород, водород, азот, фосфор, калий, сера, кальций, железо. Однако в растениях могут быть обнаружены и другие химические элементы, встречающиеся в почве по месту их произрастания, — марганец, бор, медь, цинк, молибден, кобальт и т. д.
Питательные вещества в растения поступают через корневую систему из почвы и через листья. Воздух содержит такие важные элементы питания и жизнедеятельности растений, как кислород, углерод и азот.
В процессе одной реакции поглощается 477 кал/моль. Формулой (СН20) обозначена элементарная единица молекулы углевода, которая служит исходным материалом для сложных углеводов, белков, жиров и других соединений. У высших растений имеются разные биохимические пути фиксации и преобразования двуокиси углерода. У большинства растений фиксация СО2 идет только по циклу С3 (пентозофосфатный восстановительный цикл), их называют С3-растения, у других — по циклу С3 и циклу С4 (циклу дикарбоновых кислот) — С4-растения. К последним относятся кукуруза, просо, сорго, сахарный тростник и др. Существует еще и третий путь фиксации СО2.
С4-растения иначе, чем С3-растения, реагируют на освещенность, тепло- и влагообеспеченность. При повышении степени освещенности и температуры у них возрастает интенсивность фотосинтеза в расчете на единицу поверхности листа. Кроме того, они более эффективно используют воду. Как правило, транспирационный коэффициент у них менее 400, тогда как у С3-растений он от 400 до 1000. Максимальная интенсивность фотосинтеза у растений с С3-пентозофосфатным циклом фиксации диоксида углерода обычно наблюдается при умеренной освещенности за С3— и С4-растений в зависимости от освещенности и температуры и яркий свет снижают интенсивность фотосинтеза.
Углерод в виде углекислоты воздуха составляет основу воздушного питания растений. Незначительное содержание СО2 в атмосферном воздухе (всего 0,03%) является одной из причин развития растениями огромной листовой поверхности для его улавливания. Нижним пределом содержания СО2 в воздухе для растений является концентрация 0,008% (~0,01%). Высокие концентрации СО2 положительно влияют на фотосинтез только при достаточно хорошем освещении и обеспеченности растений другими факторами жизни. Повышение концентрации двуокиси углерода в приземном слое воздуха до 1% благоприятно для многих культур и способствует усилению процесса фотосинтеза. Этому способствует внесение в почву органических удобрений, растительных остатков, которые при разложении выделяют углекислоту. В условиях защищенного грунта, в теплицах, во многих случаях искусственно поддерживают повышенную концентрацию СО2 (порядка 1—2%), что способствует увеличению урожайности возделываемых культур.
В почве двуокись углерода находится в различных формах и соединениях: в поглощенном и растворенном состояниях, в составе карбонатов и бикарбонатов и т. д., а также в составе почвенного воздуха как результат жизнедеятельности микроорганизмов, растений и других живых организмов. Его содержание в почвенном воздухе может достигать 10% и более.
Кислород в жизни растений и в почве имеет важное значение. Он потребляется растениями при дыхании, используется микроорганизмами почвы и активно участвует в различных химических реакциях окисления—восстановления. Содержание кислорода в почвенном воздухе по сравнению с атмосферным, где оно составляет 20,81%, может снижаться до 2—3%. Большой недостаток кислорода в почвенном воздухе влечет за собой угнетение или гибель растений. Одним из агротехнических приемов по его увеличению является улучшение аэрации почвы, усиление газообмена в почве путем ее обработки.
Азот является одним из важнейших элементов питания растений. Он входит в состав молекул белков, протеина, аминокислот и многих других органических азотсодержащих соединений. В атмосферном воздухе содержится 78,23% азота, однако он недоступен растениям. Фиксация атмосферного азота в различные азотсодержащие органические вещества осуществляется благодаря деятельности двух групп бактерий: свободноживущих, обитающих в ризосфере, и симбиотических, развивающихся на корнях некоторых растений, преимущественно бобовых. При минерализации этих веществ образуются растворимые формы нитратов, нитритов и аммиака, которые усваиваются корнями растений. Около 20% потребности растений в азоте покрывается именно за счет его перевода из воздуха в доступные формы. Остальное количество растения получают из природных запасов почвы и за счет внесения удобрений. Преобладающая часть этих запасов и часть азота, вносимая с удобрениями, находятся в форме трудно — или недоступных соединений. Регулировать содержание доступных форм азота в почве можно, создавая благоприятные почвенные условия для развития свободноживущих (азотобактера и др.) и симбиотических (клубеньковых) бактерий — хорошую аэрацию, слабокислую и нейтральную реакции почвенного раствора, оптимальные температурные условия, а также внесением в почву азотобактерина. Для тех бобовых культур, которые возделываются на данном поле впервые, в почву вносят препараты, содержащие чистую культуру клубеньковых бактерий соответствующей расы (нитрагин).
Регулирование процесса превращения азота из одних форм в другие заключается не только в ускорении разложения органического вещества почвы, растительных остатков, навоза и удобрений. Нередко в определенный отрезок времени возникает необходимость перевода азотных соединений из подвижных растворимых форм в недоступные формы органического вещества. Такая необходимость возникает на легких песчаных и супесчаных почвах, где процесс нитрификации происходит интенсивно не только летом, но и осенью, после уборки сельскохозяйственных культур. Образовавшиеся в это время нитраты остаются неиспользованными и могут с нисходящим потоком воды вымываться из корнеобитаемого слоя почвы. Чтобы использовать этот азот, после уборки одной культуры высевают другую либо для получения продукции, либо для запашки (зеленое удобрение). В этом случае аммиачный и нитратный азот используется растениями для образования органического вещества и частично (при уборке второго урожая) или полностью (при запашке) остается в почве и может быть использован растениями в следующем году.
Фосфор, калий, магний и другие элементы минерального питания растений имеют строго определенное значение в реакциях, протекающих в растениях. Фосфор входит в состав нуклеопротеидов, аденозинфосфатов и других фосфатов, обладающих пирофосфатными связями с большим запасом свободной энергии гидролиза. Он оказывает большое влияние на скорость роста и развитие растений. Калий увеличивает водоудерживающую способность и проницаемость протоплазмы, положительно влияет на синтез хлорофилла, белков, крахмала, жиров, усиливает обмен веществ в растениях. Магний входит в состав хлорофилла, служит катализатором при образовании дифосфорных эфиров, Сахаров и других соединений. Такие важнейшие аминокислоты, как цистин, цистеин, метионин, содержат серу, которая участвует в различных окислительно-восстановительных реакциях. Кальций играет важную роль в передвижении углеводов, оказывает влияние на превращение азотистых веществ, ускоряет распад запасных белков семян при прорастании.
Потребность растений в элементах минерального питания к формам их доступности в почве различна и зависит от вида, сорта растений и является предметом изучения агрохимии. Так, оптимальное отношение основных элементов питания азота, калия и фосфора для зерновых равно 1:1:0,5, а для сахарной свеклы — 1 : 1,7:4,3.
Все приемы регулирования питательного режима сельскохозяйственных культур в земледелии можно разделить на 4 группы: пополнение в почве питательных элементов; создание условий для перевода элементов питания из труднодоступных и недоступных форм в усвояемые растениями; создание условий для лучшего усвоения растениями этих элементов; мероприятия по предотвращению потерь питательных веществ из почвы.
Пополнение почвы питательными веществами осуществляется главным образом путем внесения удобрений. Виды удобрений, сроки, способы и дозы их внесения под различные культуры, а также взаимодействие их с почвой также изучаются агрохимией, а реализация всех этих разработок осуществляется в земледелии при возделывании культур.
Путем чередования на полях возделываемых культур, характеризующихся различной корневой системой, растения могут усваивать питательные элементы из разных горизонтов, слоев и перераспределять их по этим слоям. Так, при возделывании растений с глубокой корневой системой используются питательные вещества из глубоких слоев почвы, а в верхних слоях питательные вещества остаются и могут быть использованы при последующем возделывании других культур.
Некоторые растения, например донник, горох, люпин, гречиха и др., обладают способностью использовать труднодоступные для других растений соединения фосфора. При разложении растительных остатков этих культур фосфор переходит в доступные формы и может быть использован растениями других видов. Создание условий для превращения питательных веществ из одних форм в другие осуществляется путем обработки почвы, при этом создаются лучшие условия для ее аэрации, что способствует усилению микробиологической деятельности, минерализации органических веществ. Поскольку гумус, растительные остатки и органические удобрения содержат азот, фосфор, калий и другие макро- и микроэлементы, то эти вещества переходят из органической формы в органо-минеральные и минеральные растворимые соединения и, таким образом, могут быть использованы растениями. Многие виды микроорганизмов способствуют использованию труднорастворимых соединений фосфора, растворяя их в различных кислотах, образующихся при разложении органического вещества. Большое значение имеет проведение мероприятий по созданию оптимальных для растений физических свойств почв, реакции почвенного раствора, улучшению водного режима почв.
Имеющиеся в почве питательные вещества могут различными путями теряться и, следовательно, не использоваться растениями. Такие потери связаны с проявлением эрозионных процессов, с вымыванием поверхностными и внутрипочвенными стоками растворимых форм питательных элементов, выносом с полей при уборке урожая (с почвой, приставшей к корнеплодам и клубнеплодам). В результате минерализации органического вещества и процессов денитрификации азот переходит в газообразное состояние и, таким образом, теряется. Особенно велики такие потери азота на полях, не покрытых в вегетационный период растительностью. Следовательно, все приемы по сохранению влаги в почве, по борьбе с эрозией почв выполняют и задачу по снижению потерь питательных элементов. Процесс денитрификации интенсивнее протекает на почвах с избыточным увлажнением и плохой аэрацией при нейтральной реакции почвенного раствора. Поэтому повышение аэрации и усиление окислительных процессов в почве, полное использование нитратного и аммиачного азота культурными растениями в течение вегетационного периода уменьшают потери азота.
Расчеты показывают, что с полей ежегодно вывозится более 10,8 млн мелкозема с картофелем и клубнеплодами, и они, видимо, занижены (Белоцерковский, 1987). В 1985 г. в Московской обл. вместе со свеклой было вынесено 8,8% почвы от всей массы (при урожайности свеклы 422 ц/га это составляло 3,7 т/га).
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.