Какие пигменты содержатся в вакуолях
Вакуоль и пигменты клеточного сока.
ВАКУОЛЬ-полость внутри клеточной ЦИТОПЛАЗМЫ,отделенная мембраной. В зависимости от организма содержат воду, газ, либо частицы пищи. Вакуоли выполняют различные функции(секреция, экскреция и хранение запасных веществ, аутофагия,автолиз
и др.). В одноклеточных организмах, таких как амеба, находятся пульсирующие вакуоли, которые заполняются водой, а затем быстро сжимаются и выталкивают излишки воды или отходы жизнедеятельности. Таким образом вакуоли осуществляют ОСМОРЕГУЛЯЦИЮ и выделение. В растениях они позволяют отдельным клеткам увеличиваться в размерах, не увеличиваясь в массе, что мешало бы МЕТАБОЛИЗМУ клетки.
ВАКУОЛЬ (от лат. vacuus—пустой, полый), сферические пространства в плазме растительных и животных клеток, наполненные жидкостью различного хим. состава. Размеры и число В. сильно варьируют и в разных клетках и в одной и той же клетке в разных ее физиологических состояниях. В. могут иметь различное содержимое.
У растений вакуоли — производные эндоплазматической сети, окружены полупроницаемой мембраной — тонопластом. Вся система вакуолей растительной клетки называется вакуомом, который в молодой клетке представлен системой канальцев и пузырьков; по мере роста и дифференцировки клетки они увеличиваются и сливаются в одну большую центральную вакуоль, занимающую 70-95% объёма зрелой клетки. Клеточный сок вакуоли — водянистая жидкость с рН 2-5, содержит растворённые в воде органические и неорганические соли (фосфаты, оксалаты и т. п.), сахара, аминокислоты, белки, конечные или токсичные продукты обмена веществ (таннины, гликозиды, алкалоиды), некоторые пигменты (напр., антоцианы).
Одна из важных функций растительных вакуолей — накопление ионов и поддержание тургора (тургорного давления). Вакуоль — это место запаса воды.
В цитоплазме простейших находятся содержащие ферменты пищеварительные вакуоли и выполняющие функции осморегуляции и выделения сократительные вакуоли. Для многоклеточных животных характерны пищеварительные и аутофагирующие вакуоли, входящие в группу вторичных лизосом и содержащие гидролитические ферменты.
Клеточный сок, жидкость, выделяемая цитоплазмой живой растительной клетки и заполняющая её вакуоли.
Окраска Клеточный сок определяется пигментами: синяя, фиолетовая и красная — антоцианами, жёлтая — антохлором, бурая — антофеином и т.д.
Важной группой растительных пигментов являются каротины. Они принимают участие в фотосинтезе, обладают свойствами провитамина А, защищают растения от ультрафиолета.
А пигменты клеточного сока (антоцианы), окрашивающие части растений в красный, фиолетовый, синий цвет, не участвуют в фотосинтезе.
12. Покровные ткани и их классификация. Первичная, вторичная, третичная покровные ткани. Трихомы и эмергенцы.
Покровные ткани располагаются на границе с внешней средой. Большинство из них состоит из плотно сомкнутых живых, реже мертвых клеток. Они выполняют барьерную роль, защищая внутренние ткани от высыхания и повреждения. Одна из функций покровных тканей — регуляция газообмена и транспирации. Некоторые из них способны к всасыванию и выделению, активно регулируя скорость и избирательность проникновения веществ. Покровные ткани — барьер для проникновения патогенных микроорганизмов. Это очень древнее образование, возникшее в момент выхода растений из водной среды на сушу. Подобно прочим постоянным тканям, покровные ткани возникают в процессе онтогенеза из меристем .
ПОКРОВНЫЕ ТКАНИ, наружные ткани растения, отграничивающие его от внешней среды (атмосферы, почвы, воды). Избирательно пропускают влагу, газы и другие вещества и таким образом регулируют как выделение растением различных веществ, так и их поглощение. Кроме того, покровные ткани защищают растение от внешних воздействий.
Первичная покровная ткань – кожица, или эпидерма. образующая наружный слой на листьях и молодых стеблях. С возрастом на стеблях и корнях эпидерма сменяется многослойной вторичной покровной тканью – перидермой, состоящей из клеток, различных по строению и функциям. Слой пробки предохраняет растение от проникновения в него болезнетворных организмов; многолетняя пробка защищает деревья от механических повреждений и резких колебаний температуры. Слой феллогена (пробкового камбия) обеспечивает нарастание перидермы в толщину, откладывая клетки пробки кнаружи и клетки феллодермы, питающие феллоген, внутрь. У зрелых деревьев гладкую перидерму заменяет третичная покровная ткань – корка, состоящая из чередующихся слоёв пробки и других отмерших тканей коры.
Молодые корневые окончания растений покрывает ризодерма. осуществляющая всасывание из почвы воды и минеральных веществ.
Трихо́мы, или волоски́ (от греч. τρίχωμα — волос) — клетки эпидермы, образующие на органах растений разнообразные наружные выросты. К ним относятся — волоски (железистые и нежелезистые), чешуйки, желёзки, нектарники и некоторые другие образования.
рихомы выполняют разнообразные функции, которые до конца ещё не исследованы. Принято считать, что они защищаютфизиологически ткань листа — хлоренхиму от перегрева, механически всё растение от поврежедения насекомыми и животными, способствуют уменьшению испарения влаги, выведению солей из тканей листа и осуществляют химическую защиту растений. Трихомы бывают одноклеточными и многоклеточными, мертвыми и живыми. Мертвые — заполнены воздухом и придают растению белый цвет. Форма трихом может быть разнообразной (головчатые, звездчатые, крючковатые и др.). Часто трихомы минерализованы — пропитаны кремнеземом и кальцием. Волосками чаще всего покрыты растения аридных — засушливых областей, высокогорий, приполярных районов земного шара, а также растения засорённых местообитаний.
Эмерге́нцы — особые выросты на поверхности эпидермиса растений, в формировании которых, кроме кожицы, принимают участие и лежащие под ней клетки.
К эмергенцам относятся шипы, покрывающие черешки листьев и молодые побеги у розы, малины, ежевики. Иногда к эмергенцам относят волоски хмеля, шипы на плодах многих зонтичных, каштана конского, дурмана. Существуют переходные формы между эмергенцами и трихомами. Эмергенцы располагаются на эпидермисе беспорядочно и этим отличаются от морфологически сходных с ними колючек.
Эпидермис образуется не только снаружи органа, но и внутри, если в органе формируется полость. Например, ткань, выстилающая полость плодов (гороха, бобов, фасоли, мака, дурмана и т. д.), по своему происхождению идентична эпидермису наружной стенки плода.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 октября 2017;
проверки требуют 32 правки.
Вакуо́ль (лат. vacuus — пустой) — пространство в центральной части клетки, заполненное клеточным соком; одномембранная органелла, содержащаяся в некоторых эукариотических клетках.
Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада.
Образование вакуолей[править | править код]
Вакуоли развиваются из мембранных пузырьков — провакуолей. Провакуоли являются производными эндоплазматического ретикулума и комплекса Гольджи, они сливаются и образуют вакуоли. Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент.
Строение[править | править код]
Для большинства зрелых клеток характерна центральная вакуоль. Вакуоли особенно хорошо заметны во многих зрелых клетках растений, т. к. они составляют более половины объёма клетки, при этом они могут сливаться в одну. При этом вакуоль настолько крупна, что занимает 75-90 % объёма клетки, так, что протопласт (живое содержимое клетки) располагается в виде очень тонкого постенного слоя, выстилающего клеточную оболочку.
Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости в клетке, заполненные обычно водянистым содержимым — клеточным соком. Клеточный сок представляет собой, как правило, водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. Основной компонент — вода. В ней накапливаются многочисленные соединения — минеральные или органические. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная (рН 3-5). Вещества, входящие в состав клеточного сока, разнообразны — это неорганические вещества (нитраты, фосфаты, хлориды и др.), углеводы (сахара и полисахариды), белки, органические кислоты и их соли, алкалоиды, гликозиды, пигменты, танины, фитонциды и другие органические соединения, растворимые в воде.
От цитоплазмы клеточный сок ограничен избирательно проницаемой вакуолярной мембраной — тонопластом (не путать с тонопластом хлоропласта) (лат. tonus — напряжение; греч. платос — оформленный), выполняющим барьерную и транспортную функцию.
Функции[править | править код]
Вакуоли в растительных клетках формируют внутреннюю водную среду, с их помощью осуществляется водно-солевой обмен. Участвуют в активном транспорте и накоплении в вакуолях некоторых ионов. Другая важнейшая роль вакуолей состоит в поддержании тургорного давления внутриклеточной жидкости в клетке. К тому же, вакуоли накапливают запасные вещества и участвуют в «захоронении» отбросов (конечных продуктов метаболизма). Иногда вакуоли разрушают токсичные или ненужные в клетке вещества. Обычно это выполняется специальными небольшими вакуолями, содержащими соответствующие ферменты. Такие вакуоли получили название лизосомных.
Литература[править | править код]
- Кузеванов В. Я., Катков Б. Б., Р.К.Саляев Общие принципы выделения вакуолей и вакуолярных мембран // Структура и функции биологических мембран растений / Под ред. Саляева Р. К., Войникова В. К. — Новосибирск: Наука, 1985. — С. 93—107. [1]
- Билич Г. Л., Крыжановский В. А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — М.: Издательство Оникс, 2009. — Т. 1. — 864 с. — ISBN 978-5-488-02311-6
- Васильев А.Е., Воронин Н. С., Еленевский А.Г. Серебрякова Т.И., Шорина Н.И. Ботаника. Морфология и анатомия растений. 2-е издание, переработанное. МОСКВА » ПРОСВЕЩЕНИЕ» 1988 год. — 480 с. ISBN 5-09-000652-0
- Медиафайлы по теме вакуоль в Викискладе
Вакуоль является еще одним организмом, типичным для растительных клеток.
Морфология вакуолярной системы очень разнообразна ? от мелких многочисленных пузырьков в меристематических клетках до крупной центральной вакуоли, занимающей до 90% объема в зрелых клетках.
Комплексное использование разнообразных методов: электронно-микроскопических и биохимических, позволило швейцарскому цитологу Ф. Матилю (Matile) разработать схему образования вакуолярной системы в растительных клетках.
Первичные элементы вакуолярной системы в виде небольших пузырьков ? провакуолей обнаруживаются уже в меристематических клетках. Современная электронная микроскопия позволяет проследить, что провакуоли могут возникать как расширения цистерн эндоплазматической сети, которые затем от нее отщепляются.
По мере роста клетки провакуоли сливаются друг с другом и вакуоль увеличивается в размерах. При этом формируется вакуолярная мембрана ? топопласт. Топопласт является производным мембран эндоплазматического ретикулума.
Возникший тонопласт может образовывать инвагинации, что приводит к включению в вакуоль цитоплазматического материала.
Пузырьки ? производные аппарата Гольджи ? не сливаются с мембраной вакуоли, а попадают в вакуоль в результате инкапсуляции их топопластом. Затем в полости вакуоли эти мембраны лизируются.
В последнее время появилось много электронно — микроскопических доказательств существования у растения автофагии (самопожирания). Участок цитоплазмы с различными компонентами окружается мембраной эндоплазматической сети. При этом возникает особая автофаговая вакуоль. Внутри вакуоли происходит переваривание ? лизис содержимого. Таким образом, образовавшаяся в результате автофагии вакуоль идентична лизосоме.
Состав вакуолярного сока
Вакуолярное содержимое ? клеточный сок ? представляет собой водный раствор самых разнообразных веществ. Он содержит:
- минеральные ионы;
- вещества первичного обмена: органические кислоты и их соли, углеводы, пектиновые соединения, белки,
- а также вещества вторичного происхождения ? фенолы, танины, флавоноиды, пигменты, алкалоиды.
Состав и консистенция клеточного сока значительно отличается от свойств протопласта. Клеточный сок обычно имеет слабокислую реакцию РН = 5.0 -6.5. Из органических кислот в клеточном соке наиболее часто встречаются лимонная, яблочная, янтарная и щавелевая. Особенно много этих кислот в клеточном соке незрелых плодов.
Алкалоиды ? обширная группа природных азотсодержащих соединений основного характера. Они относятся преимущественно к гетероциклическим соединениям с азотом в кольце. Алкалоиды имеют горький вкус. Часто алкалоиды обладают сильным фармакологическим действием. В настоящее время из растений выделено свыше 5000 алкалоидов.
Обычно концентрация алкалоидов в растениях невелика. Уже при содержании 1 — 3% растения считаются богатыми алкалоидами.
Многие алкалоиды сильные яды, другие обладают наркотическим или тонизирующим эффектом. Это обусловило их широкое применение в медицине и промышленности.
Так в медицинской практике нашли применение более 80 алкалоидов. С использованием алкалоидов связано производство тонизирующих напитков: чая, кофе, какао; а также табачная промышленность. Ряд алкалоидов применяют в сельском хозяйстве как инсектициды.
Биологические функции алкалоидов в растениях еще окончательно не выяснены. Их считают своеобразными стимуляторами и регуляторами биохимических процессов. Несомненна в некоторых случаях защитная функция алкалоидов у ядовитых растений, предохраняющая их от поедания.
Танины (дубильные вещества) ? это высокомолекулярные фенольные соединения, способные осаждать белки и алкалоиды. Дубильные вещества обладают вяжущим вкусом.
В природе немало растений, содержащих дубильные вещества. Особенно много их в двудольных растениях.
Лекарственное сырье, содержащее дубильные вещества, отличается бактерицидными свойствами. Танины используются также при отравлении тяжелыми металлами и растительными ядами ? алкалоидами.
Обладающие антисептическими свойствами дубильные вещества защищают растения от инфекции.
Гликозиды — сложные органические вещества, в состав которых входит какой — либо сахар и несахаристая часть ? агликон. Агликонами могут быть: спирты, альдегиды, фенолы и другие вещества.
Гликозиды играют в растениях весьма разнообразную роль. Некоторые исследователи определяют их как одну из форм отложения сахаров и считают их запасными питательными веществами. В пользу этого положения свидетельствует тот факт, что гликозиды легко расщепляются ферментами в присутствии воды.
Другие приписывают гликозидам защитное действие, предохраняющее растение от заболеваний и поедания.
Кроме того, гликозиды весьма активные биологические вещества. Они участвуют в процессах обмена, например, в построении аминокислот.
Широкое применение нашли гликозиды и в медицине, особенно гликозиды сердечной группы, стимулирующие сердечную деятельность.
У растений, как известно, запасные белки откладываются в вакуолях. Существует два типа запасных белковых соединений:
- растворимые альбумины
- плотные белковые комплексы фитина и глобулинов.
Обычно белки откладываются в особых запасающих вакуолях, получивших название алейроновых зерен.
В вакуолях часто накапливаются пигменты. Они относятся к группе гликозидов. Голубой, фиолетовый, пурпурный, темно-красный и пунцовый цвета придают растениям пигменты из группы антоцианов. В отличие от большинства других пигментов, антоцианы легко растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей, фруктов и цветов. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла.
При высоком содержании некоторых веществ в вакуолях могут образовываться кристаллы. Особенно часто встречаются кристаллы оксалата кальция, имеющие различную форму.
Топопласт
Мембрана, окружающая вакуоль, была названа известным генетиком Гуго Де Фризом ? топопластом.
Общая толщина топопласта несколько меньше, чем у плазмалеммы (до 8 нм), но больше, чем у мембран эндоплазматической сети.
Топопласт беднее стеролами и богаче фосфолипидами по сравнению с плазмалеммой. Высокое содержание фосфолипидов придает топопласту большую эластичность. Это имеет для вакуолей огромное значение. Топопласт способен выдерживать значительное давление клеточного сока, растягиваться и спадаться при изменении объема вакуоли.
Функции вакуолей
Вакуоли выполняют две основные функции ? 1) накопление запасных веществ и отбросов, т.е. они совмещают в себе функции склада и свалки внутри клетки; 2) поддержание тургора растительной клетки.
О запасных веществах я уже говорил, приводя характеристику химического состава клеточного сока.
С особенностями химического состава тесно связана и вторая функция вакуолей. Дело в том, что концентрация солей и сахаров в вакуолях обычно выше, чем в цитоплазме и окружающей среде. Поэтому вода свободно (по градиенту концентрации) поступает в вакуоли в результате осмоса. Поступающая вода оказывает давление на протопласт и клеточные стенки, вызывая напряженное состояние клетки ? тургор.
Тургор позволяет сохранять форму мягким и сочным необревесневшим органам. Увеличение размера клетки происходит за счет роста вакуоли. Потеря тургора в результате обезвоживания вызывает увядание растения.
Обезвоживание происходит не только при длительной нехватке воды. Если погрузить клетку в гипертонический раствор соли или сахара (концентрация которого выше, чем концентрация клеточного сока), то начинается осмотический выход воды из вакуоли. При этом тургор исчезает, протопласт сморщивается, отходит от клеточных стенок, наступает плазмолиз клетки.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
В клетках растений, грибов и многих протистов содержатся вакуоли — крупные мембранные пузырьки или полости, заполненные преимущественно водным содержимым. Вакуоли образуются из пузыревидных расширений эндоплазматической сети или из пузырьков комплекса Гольджи.
Вакуоли растительных клеток. В молодых клетках растений возникает много небольших вакуолей. Увеличиваясь, они сливаются в одну центральную вакуоль, которая может занимать до 90 % объема клетки (рис. 40).
Содержимое вакуолей — клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растения, органа, ткани и возраста клетки. В клеточном соке могут содержаться соли, углеводы (прежде всего сахароза, глюкоза, фруктоза), карбоновые кислоты (яблочная, лимонная, щавелевая, уксусная), аминокислоты, белки. Это запасные вещества, которые временно выведены из обмена веществ и могут использоваться клеткой снова.
Помимо запасных веществ, клеточный сок содержит конечные продукты обмена, которые выводятся в вакуоль и таким образом изолируются. Это, например, танины (дубильные вещества), алкалоиды, некоторые пигменты. Считается, что танины с их вяжущим вкусом и алкалоиды выполняют защитную функцию: их неприятный (чаще горький) вкус и специфический запах отталкивают травоядных животных, что предотвращает поедание этих растений.
В вакуолях часто обнаруживаются разнообразные по форме кристаллы оксалата кальция, который также является конечным продуктом обмена веществ (рис. 41).
В клеточном соке многих растений содержатся пигменты. Самыми распространенными из них являются антоцианы, придающие клеточному соку пурпурный, красный, синий или фиолетовый цвет. Близкие к антоцианам флаво-ноиды окрашивают клеточный сок в желтые и кремовые оттенки. Именно эти пигменты определяют окраску лепестков, плодов, почек, листьев и корнеплодов многих растений. Например, цвет корнеплодов свеклы обусловлен антоцианами.
Цвет антоцианов может меняться в зависимости от кислотности среды: в кислой среде он красный, в нейтральной — фиолетовый, в щелочной — синий. Кроме того, могут наблюдаться все переходные оттенки. Реакция клеточного сока в процессе жизнедеятельности растений может меняться от сильнокислой до слабокислой или даже слабощелочной, что вызывает соответствующие изменения цвета пигментов. Поэтому цветки некоторых растений (например, медуницы неясной) во время цветения могут изменять свою окраску от розовой до синей.
Клеточный сок некоторых растений содержит биологически активные вещества, например фи то гормоны (регуляторы и координаторы роста растений), фитонциды (вещества, убивающие или подавляющие рост микроорганизмов), ферменты. В последнем случае вакуоли действуют подобно лизосомам. После гибели клетки мембрана, ограничивающая вакуоль, теряет свою избирательную проницаемость, и ферменты, высвобождаясь из вакуолей, вызывают самопереваривание клетки (автолиз).
Вакуоли играют главную роль в поглощении воды растительными клетками. Вода поступает в вакуоль путем осмоса (так как клеточный сок является более концентрированным раствором, чем гиалоплазма) и оказывает давление на цитоплазму, а тем самым и на оболочку клетки. В результате в клетке развивается тургорное давление, которое обусловливает напряженное состояние клеточной оболочки, а также ее растяжение во время роста клетки.
В запасающих тканях растений вместо одной центральной вакуоли часто бывает несколько. В них накапливаются запасные питательные вещества. Углеводы могут находиться в вакуолях в растворенном виде (моно- и олигосахариды) или в виде гранул (полисахариды). Белки откладываются в виде твердых зернистых образований. Их особенно много в клетках семян злаков и бобовых.
Сократительные (пульсирующие) вакуоли характерны для одноклеточных пресноводных протистов, например инфузории туфельки (рис. 42). Концентрация солей в речной или озерной воде значительно ниже, чем в клетках протистов, поэтому вода непрерывно поступает в их клетки путем осмоса. Избыток воды накапливается в сократительных вакуолях, которые периодически сокращаются благодаря взаимодействию расположенных вокруг них микротрубочек и микрофиламентов. Вода выводится наружу через специальную выделительную пору, и клетка сохраняет более или менее постоянный объем. Следовательно, сократительные вакуоли выполняют в клетках функцию осморегуляции — поддерживают на определенном уровне содержание воды и концентрацию солей.
Таким образом, вакуоли выполняют в клетках важные функции, связанные с регуляцией водного режима и поддержанием тургора клетки, а также с хранением запасных питательных веществ, биологически активных веществ и конечных продуктов жизнедеятельности клетки.
1. Что представляют собой вакуоли? Как они образуются?
‘ 2. Какие вещества содержатся в клеточном соке вакуолей растительных клеток?
3. Какие функции выполняют вакуоли в растительных клетках?
4. У каких организмов имеются сократительные вакуоли? Какова их функция?
5. Чем пищеварительные вакуоли отличаются от других вакуолей клетки?
6. Амебу и эритроцит поместили в дистиллированную воду. Что произойдет с каждой клеткой? Почему?
7. Докажите справедливость утверждения: «Одномембранные органоиды клетки взаимосвязаны и образуют единую мембранную систему, каждый компонент которой специализирован на выполнении определенных функций».
8. У морских протистов сократительные вакуоли пульсируют очень редко или вообще отсутствуют. С чем это связано?
Биология: учеб. для 10-го кл. учреждений общ. сред, образования с рус. яз. обуч. / Н. Д. Лисов [и др.]; под ред. Н. Д. Лисова. — 3-е изд., перераб. — Минск : Народная асвета, 2014. — 270 с.: ил.