Какие основные свойства мышц

Какие основные свойства мышц thumbnail

Основными свойствами мышц являются сократимость, возбудимость и лабильность.

Сократимость заключается в способности мышцы укорачивать или развивать мышечное напряжение. Напряжение или сокращение происходит под влиянием нервного импульса, приходящего в мышцу через нервно-мышечный синапс.

Мышечные сокращения могут быть изотоническими и изометрическими.

Изотоническое сокращение при неизменном напряжении мышцы выражается в уменьшении ее длины и увеличении поперечного сечения. Изометрическое мышечное сокращение заключается в усилении напряженности мышцы при неизменной длине, например сокращение мышцы конечности, оба конца которой закреплены неподвижно.

В естественных условиях в организме к мышце посылается всегда серия импульсов, мышечные сокращения носят смешанный характер, и движения человека сопровождаются как изотоническими, так и изометрическими сокращениями.

В экспериментальных условиях для мышечного сокращения достаточно одного нервного импульса. Такое сокращение мышцы называют одиночным, оно протекает очень быстро, в пределах нескольких десятков миллисекунд. Одиночные сокращения суммируются в одно более продолжительное сокращение, которое называется тетаническим сокращением, или тетанусом. Именно тетанус обеспечивает длительность и плавность мышечных сокращений.

В ответ на раздражение в мышце развивается процесс возбуждения. Уровень возбудимости мышцы является одним из важнейших функциональных показателей, характеризующих функциональное состояние всего нервно-мышечного аппарата. Процесс возбуждения мышцы сопровождается изменением обмена веществ в клетках мышечной ткани и, соответственно, изменением ее биоэлектрических особенностей.

Лабильность — скорость или длительность протекания процесса возбуждения в возбудимой ткани. Этот термин был впервые предложен российским физиологом Н.Е. Введенским. Мышечные волокна обладают значительно меньшей лабильностью в сравнении с нервными волокнами, но большей, чем лабильность синапсов.

Уровни возбудимости и лабильности мышцы не являются постоянными и меняются при действии различных факторов. Например, небольшая физическая нагрузка (утренняя зарядка) повышает возбудимость и лабильность нервно-мышечного аппарата, а значительные физические и умственные нагрузки понижают.

Сила мышц измеряется тем максимальным напряжением, которое она способна развить в условиях изометрического сокращения. Величина напряжения зависит от количества и толщины мышечных волокон, образующих мышцу.

Количество и толщина мышечных волокон определяются по физиологическому поперечнику мышцы, под которым понимается площадь поперечного разреза мышцы (см2), проходящего через все мышечные волокна. Толщина мышцы не всегда совпадает с ее физиологическим поперечником. Например, при равной толщине мышцы с параллельным и перистым расположением волокон значительно отличаются по физиологическому поперечнику. Перистые мышцы имеют больший поперечник и обладают большей силой сокращения. Характеризует силу мышц также ее анатомическая толщина (анатомический поперечник), представляющая собой площадь поперечного сечения мышцы. Чем толще мышца, тем она сильнее.

Источник

Основными свойствами мышц являются сократимость, возбудимость и лабиль­ность.

Сократимость заключается в способности мышцы укорачивать или раз­вивать мышечное напряжение. Напряжение или сокращение происходит под влиянием нервного импульса, приходящего в мышцу через нервно-мышечный синапс**.

* Сфинктер — мышца в виде кольца, функция которой заключается в перекрытии про­света полого органа

** Синапсы (греч. synapsis — соединение, связь) — специализированные функцио­нальные контакты между возбудимыми клетками, служащие для передачи и преобразо­вания сигналов

Мышечные сокращения могут быть изотоническими и изометрическими.

Изотоническое сокращение при неизменном напряжении мышцы выражает­ся в уменьшении ее длины и увеличении поперечного сечения. Изометрическое мышечное сокращение заключается в усилении напряженности мышцы при не­изменной длине, например, сокращение мышцы конечности, оба конца которой закреплены неподвижно.

В естественных условиях в организме к мышце посылается всегда серия им­пульсов, мышечные сокращения носят смешанный характер, и движения человека сопровождаются как изотоническими, так и, изометрическими сокращениями.

В экспериментальных условиях для мышечного сокращения достаточно одно­го нервного импульса. Такое сокращение мышцы называют одиночным, оно про­текает очень быстро, в пределах нескольких десятков миллисекунд. Одиночные сокращения суммируются в одно более продолжительное сокращение, которое называется тетаническим сокращением, или тетанусом. Именно тетанус обес­печивает длительность и плавность мышечных сокращений.

В ответ на раздражение в мышце развивается процесс возбуждения. Уровень возбудимости мышцы является одним из важнейших функциональных показате­лей, характеризующих функциональное состоящие всего нервно-мышечного аппа­рата. Процесс возбуждения мышцы сопровождается изменением обмена веществ в клетках мышечной ткани и соответственно изменением ее биоэлектрических особенностей.

Лабильность — скорость или длительность протекания процесса возбужде­ния в возбудимой ткани. Этот термин был впервые предложен российским фи­зиологом Н. Е. Введенским. Мышечные волокна обладают значительно меньшей лабильностью в сравнении с нервными волокнами, но большей, чем лабильность’ синапсов.

Уровни возбудимости и лабильности мышцы не являются постоянными и ме­няются при действии различных факторов. Например,» небольшая физическая на­грузка (утренняя зарядка) повышает возбудимость и лабильность нервно-мышеч­ного аппарата, а значительные физические и умственные нагрузки понижают.

Сила мышц

Сила мышц измеряется тем максимальным напряжением, которое она способна развить в условиях изометрического сокращения. Величина напряжения зависит от количества и толщины мышечных волокон, образующих мышцу.

Количество и толщина мышечных волокон определяются по физиологическо­му поперечнику мышцы, под которым понимается площадь поперечного разреза мышцы (см2), проходящего через все мышечные волокна. Толщина мышцы не всег­да совпадает с ее физиологическим поперечником. Например, при равной толщине мышцы с параллельным и перистым расположением волокон значительно отлича­ются по физиологическому поперечнику. Перистые мышцы имеют больший попе­речник и обладают большей силой сокращения. Характеризует силу мышц также ее анатомическая толщина (анатомический поперечник), представляющая собой площадь поперечного сечения мышцы. Чем толще мышца, тем она сильнее.

Влияние мышечной работы на функциональное состояние физиологических систем организма

Мышечная работа влияет на все стороны жизнедеятельности организма, по­скольку она связана с большими энергетическими затратами организма: уве­личивается интенсивность обмена веществ и энергии, приток кислорода в ор­ганизм, более напряженно функционирует сердечно-сосудистая система и т. д. Например, энергетические затраты организма в покое в среднем составляют 4,18 кДж/кг массы, при легкой работе (учителя, канцелярские служащие и др.) требуется уже более 8,36 кДж/кг массы, работа средней тяжести (маляры, тока­ри, слесари и др.) — 16,74 Дж/кг. Тяжелая физическая работа увеличивает расход энергии до 29,29 Дж/кг. В покое объем воздуха, прошедший легкие за 1 мин, со­ставляет 5-8 л, при физических нагрузках он может увеличиваться до 50-100 л. Мышечная работа увеличивает также нагрузку на сердце. В покое оно при каж­дом сокращении выбрасывает в аорту до 60-80 мл крови, при усиленной работе количество крови возрастает до 200 мл.

Читайте также:  Какими свойствами обладает вихревое индукционное электрическое поле

Таким образом, мышечная работа оказывает широкое активизирующее вли­яние на все стороны жизнедеятельности организма, что имеет большое физио­логическое значение: поддерживается высокая функциональная активность всех физиологических систем, значительно повышается общая реактивность организ­ма и его иммунные качества, увеличиваются адаптационные резервы.

Физическое утомление

Длительные и интенсивные мышечные нагрузки приводят к временному сниже­нию физической работоспособности организма — утомлению. Процесс утомле­ния затрагивает изначально ЦНС, затем нервно-мышечный синапс и в послед­нюю очередь мышцу. Так, люди, которые недавно лишились руки или ноги, еще долгое время ощущают их наличие. Если им дать задание мысленно работать от­сутствующей конечностью, то они вскоре заявят о своей усталости. Следователь­но, процессы утомления у таких людей развиваются в ЦНС, поскольку никакой мышечной работы не производилось.

Утомление — это нормальный физиологический процесс, выработанный для защиты физиологических систем от систематического переутомления, которое яв­ляется патологическим процессом и ведет к расстройству деятельности нервной и других физиологических систем организма. Рациональный отдых быстро способ­ствует восстановлению работоспособности. После физической работы полезно сме­нить род деятельности, так как полный покой медленнее восстанавливает силы.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 января 2018;
проверки требует 31 правка.

Мы́шечные тка́ни (лат. Textus muscularis «ткань мышечная») — ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность является главной функцией.

Основные морфологические признаки элементов мышечной ткани: удлинённая форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Слева: мышцы левой ноги (вид спереди); справа: мышцы и кости правой ноги (вид в профиль справа); посередине: надколенник. Микеланджело, ок. 1515—1520 г.

Специальные сократительные органеллы — миофиламенты, или миофибриллы — обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина, при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Свойства мышечной ткани[править | править код]

  • Возбудимость
  • Проводимость
  • Лабильность
  • Сокращение.

Виды мышечной ткани[править | править код]

Гладкая мышечная ткань[править | править код]

Состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 15—500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть её деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).
С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза.

Поперечнополосатая скелетная мышечная ткань[править | править код]

Состоит из миоцитов, имеющих большую длину (до нескольких см) и диаметр 50—100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Поперечнополосатая сердечная мышечная ткань[править | править код]

Состоит из одно- или двухъядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы (по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма. Существует также другой межклеточный контакт — анастомозы (впячивание цитолеммы одной клетки в цитолемму другой). Этот вид мышечной ткани является основным гистологическим элементом миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша). Особым свойством этой ткани является автоматизм — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках (типичные кардиомиоциты). Эта ткань является непроизвольной (атипичные кардиомиоциты). Существует третий вид кардиомиоцитов — секреторные кардиомиоциты (в них нет фибрилл). Они синтезируют предсердный натрийуретический пептид (атриопептин) — гормон, вызывающий снижение объёма циркулирующей крови и системного артериального давления.

Функции мышечной ткани[править | править код]

Двигательная. Защитная. Теплообменная. Сокращение и реакция на раздражение. Также можно выделить ещё одну функцию — мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Мышечная ткань как пищевой продукт[править | править код]

Мясо (пищевой продукт) представляет собой мышечную ткань убитого животного (например, крупного рогатого скота). Мясо — ценный продукт для человека и других плотоядных животных

Примечания[править | править код]

Ссылки[править | править код]

  • Мышечная ткань // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Читайте также:  Благодаря какому свойству воды обеспечивается регуляция теплового режима

Источник

Возбудимость — способность приходить в состояние возбуждения при действии раздражителей.

Проводимость — способность проводить возбуждение.

Сократимость — способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.

Лабильность — лабильность мышцы равна 200-300 Гц.

При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы:

латентный период — время от начала действия раздражителя до начала ответной реакции;

фаза сокращения (фаза укорочения);

фаза расслабления.

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления — зубчатый тетанус (рис. 5).

Рис. 5. Различные виды тетануса при повышении частоты раздражения. I — одиночные сокращения; II-III — зубчатый тетанус; VI — гладкий (сплошной) тетанус

Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде — оптимальным.

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде — пессимальным.

Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Механизм мышечного сокращения. Мышцы состоят из мышечных волокон, которые состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков актина и миозина. Перегородки, называемые 2-пластинами, разделяют миофибриллы и, следовательно, мышечное волокно на участки — саркомеры. В саркомере наблюдают правильно чередующиеся поперечные светлые и темные полосы. Эта поперечная исчерченность миофибрилл обусловлена определенным расположением нитей актина и миозина. В центральной части каждого саркомера свободно расположены толстые нити миозина. На обоих концах саркомера находятся тонкие нити актина, прикрепленные к Z-пластинам. Нити миозина выглядят в световом микроскопе как светлая полоска (Н-зона) в темном диске, который дает двойное лучепреломление, т. к. содержит нити миозина и актина и называется анизотропным или А-диском. По обестороны от А-диска находятся участки, которые содержат только тонкие нити актина и кажутся светлыми, т. к. они обладают одним лучепреломлением и называются изотропными или j-дисками. По их середине проходит темная линия — Z-мембрана. Именно благодаря такому периодическому чередованию светлых и темных дисков сердечная и скелетная мышцы выглядят исчерченными (поперечно-полосатыми) (рис. 6).

Рис. 6. Электронномикроскопическая картина миофибриллы (схематизировано)(А). Взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б) и сокращенной (В) миофибрилле.

В состоянии покоя концы толстых и тонких: нитей лишь незначительно перекрываются на уровне А-диска. В соответствии с теорией скользящих нитей при сокращении тонкие актиновые нити скользят вдоль толстых миозиновых нитей, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити своей длины не изменяют.

Механизм скольжения нитей. Миозиновые нити имеют поперечные мостики (выступы) с головками, которые отходят от нити биполярно. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина. Молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям.

Во многих местах участки поверхностной мембраны мышечной клетки углубляются в виде трубочек внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-систему). Параллельно миофибриллам и перпендикулярно поперечным трубочкам расположена система продольных трубочек (альфа-система). Пузырьки на концах этих трубочек — терминальные цистерны — подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В этих пузырьках сосредоточено основное количество внутриклеточного кальция.

В состоянии покоя миозиновый мостик заряжен энергией (миозин фосфорилирован), но он не может соединиться с нитью актина, так как между ними находится система из нитей тропомиозина и глобул тропонина. При возбуждении ПД быстро распространяется по мембранам поперечной системы внутрь клетки и вызывает высвобождение ионов кальция из альфа-системы. С появлением ионов кальция в присутствии АТФ происходит изменение пространственного положения тропонина, в результате чего отодвигается нить тропомиозина и открываются участки актина, присоединяющие ми-озиновые головки. Соединение головки фосфорилированного миозина с актином приводит к изменению положения мостика (его «сгибанию»), в результате конформации этой части миозиновой молекулы, и перемещению нити актина на один шаг (на один «гребок») к середине саркомера. Затем происходит отсоединение мостика от актина. Ритмические прикрепления и отсоединения головок миозина позволяют «грести» или тянуть актиновую нить к середине саркомера.

Читайте также:  Какой тип реакции характерен для свойств алканов обусловленных сигма связью

При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из протофибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина. Вследствие чего тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Вместе с тем, происходит фосфорилирование миозина за счет АТФ, который не только заряжает системы для дальнейшей работы, но и способствует временному разобщению нитей. Удлинение (расслабление) мышцы после ее сокращения является процессом пассивным, поскольку актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон и мышцы, а также силы растяжения мышц антагонистов.

Гладкие мышцы. Гладкие мышцы, формирующие мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых внутренних органов, построены из веретенообразных одноядерных мышечных клеток. Отдельные клетки в гладких мышцах функционально связаны между собой низкоомны-ми электрическими контактами — нексусами. За счет этих контактов потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного мышечного волокна на другое. Поэтому несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, вследствие беспрепятственного распространения возбуждения с одного волокна на другое в реакцию вовлекается вся мышца. Следовательно, гладкие мышцы представляют собой не морфологический, а функциональный синцитий.

Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.

Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.

Сильное и резкое растяжение гладких мышц вызывает их сокращение. Последнее обусловлено нарастающей при растяжении деполяризацией клеток, обусловливающих автоматию гладкой мышцы. Сокращение, индуцируемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, а также обеспечивает непроизвольное (автоматическое) опорожнение переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.

В гладких мышцах одиночное сокращение продолжается несколько секунд. Тетаническое сокращение возникает при низкой частоте слияния одиночных сокращений и низкой частоте сопровождающих его ПД.

В отличие от скелетной мышцы гладкая мышца кишки, мочеточника, желудка и матки развивает спонтанные тетанообразные сокращения в условиях ее изоляции и денервации, и даже после блокады нейронов интрамуральных ганглиев. В этом случае они возникают не в результате передачи нервных импульсов с нерва, а вследствие активности клеток, обладающих автоматией, т. е. пейсмекерных клеток. Последние идентичны по структуре другим мышечным клеткам, но отличаются по электрофизиологическим свойствам. В этих клетках возникают препотенциалы или пейсмекерные потенциалы, депо-ляризующие мембрану до критического уровня. Вследствие входа, главным образом, ионов кальция мембрана деполяризуется до изо-электрического уровня, а затем поляризуется с обратным знаком (до + 20 мВ) . Реверсия потенциала длится в течении нескольких секунд. За реполяризацией следует новый препотенциал, который вызывает еще один потенциал действия.

Вегетативная нервная система и ее медиаторы оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетил холина на препарат мышцы толстой кишки пейсмекерные клетки деполяризуются до околопорогового уровня и ча-стота ПД возрастает. Инициируемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее суммированное сокращение. Нанесение на этот препарат норадрена-лина гиперполяризует мембрану и таким образом снижает частоту ПД и величину тонуса.

Возбуждение гладкомышечных клеток вызывает либо увеличение входа ионов кальция через мембрану клетки, либо высвобождение ионов кальция из внутриклеточных хранилищ. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры. Так же как сердечная и скелетная мышца, гладкая мышца всегда пассивно расслабляется, если концентрация ионов кальция очень мала. Однако расслабление гладких мышц происходит более медленно, т. к. замедлено удаление ионов кальция.

Источник