Какие основные свойства моделей

Какие основные свойства моделей thumbnail

Главная Моделирование

»

Файлы

» Методички »

Моделирование

[ Добавить материал ]

Модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель — создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  • Познание действительности
  • Проведение экспериментов
  • Проектирование и управление
  • Прогнозирование поведения объектов
  • Тренировка и обучения специалистов
  • Обработка информации

Классификация по форме представления

  1. Материальные — воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).

    • a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
    • b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
    • c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  2. Информационные — совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).

    • 2.1. Вербальные — словесное описание на естественном языке).
    • 2.2. Знаковые — информационная модель, выраженная специальными знаками (средствами любого формального языка).
      • 2.2.1. Математические — математическое описание соотношений между количественными характеристиками объекта моделирования.
      • 2.2.2. Графические — карты, чертежи, схемы, графики, диаграммы, графы систем.
      • 2.2.3. Табличные — таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  3. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее…
    • 3.1. Неформализованные модели — системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
    • 3.2. Частично формализованные.
      • 3.2.1. Вербальные — описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
      • 3.2.2. Графические иконические — черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
      • 3.2.3. Графические условные — данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
    • 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  • Конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • Упрощенность: модель отображает только существенные стороны объекта;
  • Приблизительность: действительность отображается моделью грубо или приблизительно;
  • Адекватность: насколько успешно модель описывает моделируемую систему;
  • Информативность: модель должна содержать достаточную информацию о системе — в рамках гипотез, принятых при построении модел;
  • Потенциальность: предсказуемость модели и её свойств;
  • Сложность: удобство её использования;
  • Полнота: учтены все необходимые свойства;
  • Адаптивность.

Так же необходимо отметить:

  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Добавил: COBA (12.06.2010) | Категория: Моделирование

Просмотров: 76895 | Загрузок: 0
| Рейтинг: 3.9/17 |
Теги: модели, моделирование, свойства, классификация

Источник

Основные свойства любой модели:

  • целенаправленность — модель всегда отображает некоторую систему, т.е. имеет цель;
  • конечность — модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • упрощенность — модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  • приблизительность — действительность отображается моделью грубо или приблизительно;
  • адекватность — модель должна успешно описывать моделируемую систему;
  • наглядность, обозримость основных ее свойств и отношений;
  • доступность и технологичность для исследования или воспроизведения;
  • информативность — модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели ) и должна давать возможность получить новую информацию;
  • сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  • полнота — в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования ;
  • устойчивость — модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
  • целостность — модель реализует некоторую систему (т.е. целое);
  • замкнутость — модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
  • адаптивность — модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
  • управляемость (имитационность) — модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
  • эволюционируемость — возможность развития моделей (предыдущего уровня).
Читайте также:  Какие закономерности наблюдаются в изменении свойства

Жизненный цикл моделируемой системы:

  • сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
  • проектирование структуры и состава моделей (подмоделей);
  • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей ;
  • исследование модели — выбор метода исследования и разработка алгоритма (программы) моделирования ;
  • исследование адекватности, устойчивости, чувствительности модели ;
  • оценка средств моделирования (затраченных ресурсов);
  • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
  • генерация отчетов и проектных (народно-хозяйственных) решений;
  • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

Моделирование — метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, — построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

Наука моделирования состоит в разделении процесса моделирования (системы, модели ) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель «собственных и неполных знаний».

Моделирование (в значении «метод», «модельный эксперимент») рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом (это называется простым или обычным экспериментом), а над копией (заместителем) оригинала. Здесь важен изоморфизм систем (оригинальной и модельной) — изоморфизм, как самой копии, так и знаний, с помощью которых она была предложена.

Модели и моделирование применяются по основным направлениям:

  • обучение (как моделям, моделированию, так и самих моделей );
  • познание и разработка теории исследуемых систем (с помощью каких-либо моделей, моделирования, результатов моделирования );
  • прогнозирование (выходных данных, ситуаций, состояний системы);
  • управление (системой в целом, отдельными подсистемами системы), выработка управленческих решений и стратегий;
  • автоматизация (системы или отдельных подсистем системы).

Вопросы для самоконтроля

  1. Что такое модель, для чего она нужна и как используется? Какая модель называется статической (динамической, дискретной и т.д.)?
  2. Каковы основные свойства моделей и насколько они важны?
  3. Что такое жизненный цикл моделирования (моделируемой системы)?

Задачи и упражнения

  1. В последнее время наиболее актуальной проблемой в экономике стало воздействие уровня налогообложения на хозяйственную деятельность. В ряду прочих принципов взимания налогов важное место занимает вопрос о той предельной норме, превышение которой влечет потери общества и государства, несоизмеримые с текущими доходами бюджета. Определение совокупной величины налоговых сборов таким образом, чтобы она, с одной стороны, максимально соответствовала государственным расходам, а с другой, оказывала минимум отрицательного воздействия на деловую активность, относится к числу главных задач управления государства. Опишите, какие, на ваш взгляд, параметры необходимо учесть в модели налогообложения хозяйственной деятельности, соответствующей указанной цели. Составьте простую (например, рекуррентного вида) модель сбора налогов, исходя из налоговых ставок, изменяемых в указанных диапазонах: налог на доход — 8-12 %, налог на добавленную стоимость — 3-5 %, налог на имущество юридических лиц — 7-10%. Совокупные налоговые отчисления не должны превышать 30-35% прибыли. Укажите в этой модели управляющие параметры. Определите одну стратегию управления с помощью этих параметров.
  2. Заданы числовой — xi, i=0, 1, …, n и символьный — yi, i=0, 1, …, m массивы X и Y. Составить модель стекового калькулятора, который позволяет осуществлять операции:
    1. циклический сдвиг вправо массива X или Y и запись заданного числа в x0 или символа операции — y0 (в «верхушку стека» X(Y) ) т.е. выполнение операции «вталкивание в стек»;
    2. считывание «верхушки стека» и последующий циклический сдвиг влево массива X или Y — операция «выталкивания из стека»;
    3. обмен местами x0 и x1 или y0 и y1 ;
    4. «раздваивание верхушки стека», т.е. получение копии x0 или y0 в x1 или y1 ;
    5. считывание «верхушки стека» Y (знака +, -, * или /), затем расшифровка этой операции, считыавние операндов операций с «верхушки» X, выполнение этой операции и помещение результата в «верхушку» X.
  3. Известна классическая динамическая модель В.Вольтерра системы типа «хищник-жертва», являющейся моделью типа «ресурс-потребление». Рассмотрим клеточно-автоматную модель такой системы. Алгоритм поведения клеточного автомата, моделирующего систему типа «хищник-жертва», состоит из следующих этапов:
    1. задаются начальные распределения хищников и жертв, случайно или детерминированно;
    2. определяются законы «соседства» особей (правила взаимоотношений) клеток, например, «соседями» клетки с индексами (i,j) считаются клетки (i-1,j), (i,j+1), (i+1,j), (i,j-1) ;
    3. задаются законы рождаемости и смертности клеток, например, если у клетки меньше двух (больше трех) соседей, она отмирает «от одиночества» («от перенаселения»).

    Цель моделирования: определение эволюции следующего поколения хищников и жертв, т.е., используя заданные законы соседства и динамики дискретного развития (время изменяется дискретно), определяются число новых особей (клеток) и число умерших (погибших) особей; если достигнута заданная конфигурация клеток или развитие привело к исчезновению вида (цикличности), то моделирование заканчивается.

Читайте также:  Какими полезными свойствами обладает творог

Темы научных исследований и рефератов, интернет-листов

  1. Моделирование как метод, методология, технология.
  2. Модели в микромире и макромире.
  3. Линейность моделей (наших знаний) и нелинейность явлений природы и общества.

Источник

    Тип
    модели
    зависит от информационной сущности
    моделируемой системы, от связей и
    отношений ее подсистем и элементов, а
    не от ее физической природы.

    Например,
    математические описания (модели)
    динамики эпидемии инфекционной болезни,
    радиоактивного распада, усвоения второго
    иностранного языка, выпуска изделий
    производственного предприятия и т.д.
    могут считаться одинаковыми с точки
    зрения их описания, хотя сами процессы
    различны.

    Границы
    между моделями различного вида весьма
    условны. Можно говорить о различных
    режимах использования моделей
    — имитационном, стохастическом и т.д.

    Как
    правило модель

    включает в себя: объект О,
    субъект (не обязательный) А,
    задачу Z,
    ресурсы B,
    среду моделирования
    С.

    Модель
    можно представить формально в виде: М
    = < O, Z, A, B, C >
    .

    Основные
    свойства
    любой
    модели:

    • целенаправленность
      модель
      всегда отображает некоторую систему,
      т.е. имеет цель;

    • конечность
      модель
      отображает оригинал лишь в конечном
      числе его отношений и, кроме того,
      ресурсы моделирования
      конечны;

    • упрощенность
      модель
      отображает только существенные стороны
      объекта и, кроме того, должна быть проста
      для исследования или воспроизведения;

    • приблизительность
      — действительность отображается моделью
      грубо или приблизительно;

    • адекватность
      модель
      должна успешно описывать моделируемую
      систему;

    • наглядность,
      обозримость основных ее свойств и
      отношений;

    • доступность
      и технологичность для исследования
      или воспроизведения;

    • информативность
      модель
      должна содержать достаточную информацию
      о системе (в рамках гипотез, принятых
      при построении модели)
      и должна давать возможность получить
      новую информацию;

    • сохранение
      информации, содержавшейся в оригинале
      (с точностью рассматриваемых при
      построении модели
      гипотез);

    • полнота
      — в модели
      должны быть учтены все основные связи
      и отношения, необходимые для обеспечения
      цели моделирования;

    • устойчивость
      модель
      должна описывать и обеспечивать
      устойчивое поведение системы, если
      даже она вначале является неустойчивой;

    • целостность
      модель
      реализует некоторую систему, т.е. целое;

    • замкнутость
      модель
      учитывает и отображает замкнутую
      систему необходимых основных гипотез,
      связей и отношений;

    • адаптивность
      модель
      может быть приспособлена к различным
      входным параметрам, воздействиям
      окружения;

    • управляемость
      модель
      должна иметь хотя бы один параметр,
      изменениями которого можно имитировать
      поведение моделируемой системы в
      различных условиях;

    • возможность
      развития моделей
      (предыдущего уровня).

    Жизненный
    цикл моделируемой системы:

    • сбор
      информации об объекте, выдвижение
      гипотез, предварительный модельный
      анализ;

    • проектирование
      структуры и состава моделей
      (подмоделей);

    • построение
      спецификаций модели,
      разработка и отладка отдельных
      подмоделей, сборка модели
      в целом, идентификация (если это нужно)
      параметров моделей;

    • исследование
      модели
      — выбор метода исследования и разработка
      алгоритма (программы) моделирования;

    • исследование
      адекватности, устойчивости, чувствительности
      модели;

    • оценка
      средств моделирования
      (затраченных ресурсов);

    • интерпретация,
      анализ результатов моделирования
      и установление некоторых причинно-следственных
      связей в исследуемой системе;

    • генерация
      отчетов и проектных (народно-хозяйственных)
      решений;

    • уточнение,
      модификация модели,
      если это необходимо, и возврат к
      исследуемой системе с новыми знаниями,
      полученными с помощью модели
      и моделирования.

    Источник

    Термин модель неоднозначен и охватывает чрезвычайно широкий круг материальных и идеальных объектов. Признаком, объединяющим такие, казалось бы, несопоставимые объекты как система дифференциальных уравнений математической физики и пара дамских туфель, выставленных на витрине, является их информационная сущность. Любая модель – идеальная или материальная, используемая в научных целях, на производстве или в быту – несет информацию о свойствах и характеристиках исходного объекта (объекта — оригинала), существенных для решаемой субъектом задачи. Модели – отражение знаний об окружающем мире.

    Пусть имеется некоторая конкретная система. Лишь в единичных случаях мы имеем возможность провести с самой этой системой все интересующие нас исследования. С ростом сложности системы возможности натурного эксперимента резко падают. Он становится дорогим, трудоемким, длительным по времени, в слабой степени вариативным. Тогда предпочтительнее работа с моделью. В ряде же случаев мы вообще не имеем возможности наблюдать систему в интересующем нас состоянии. Например, разбор аварии на техническом объекте приходится вести по ее протокольному описанию. Специалист по электронной технике будет изучать большинство типов ЭВМ по литературе, и только часть из них опробует на практике. В этих примерах доступна лишь модель, но это не мешает нам эффективно познавать систему.

    Рассмотрение вместо самой системы (явления, процесса, объекта) ее модели практически всегда несет идею упрощения. Мы огрубляем представления о реальном мире, так как оперировать категорией модели экономичнее, чем действительностью. Но вопрос выделения и формальной фиксации тех особенностей, которые существенны для целей рассмотрения, весьма непрост. Известно большое количество удачных моделей, составляющих предмет гордости человеческой мысли, — от конечноэлементной модели в прикладных задачах математической физики до модели генетического кода. Однако велико количество процессов и явлений, для которых на настоящий момент нет удовлетворительного описания. Правда, в области техники положение с моделированием можно считать удовлетворительным, но и здесь имеются «узкие» места, связанные с плохо определяемыми параметрами, коэффициентами, а также слишком грубые описания.

    Читайте также:  Какая форма графита обеспечивает наиболее высоких свойств у чугуна

    Определение. Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

    Непосредственно из структуры принятого определения вытекают ряд общих свойств моделей, которые обычно принимаются во внимание в практике моделирования.

    1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

    2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

    3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

    4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.

    5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

    6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

    Свойства любой модели таковы:

    · конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

    · упрощенность: модель отображает только существенные стороны объекта;

    · приблизительность: действительность отображается моделью грубо или приблизительно;

    · адекватность: модель успешно описывает моделируемую систему;

    · информативность: модель должна содержать достаточную информацию о системе — в рамках гипотез, принятых при построении модели.

    1.2. Классификация моделей

    Каждая модель характеризуется тремя признаками:

    q принадлежностью к определённому классу задач (по классам задач)

    q указанием класса объектов моделирования (по классам объектов)

    q способом реализации (по форме представления и обработки информации).

    Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные.

    Материальные модели:

    a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

    b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

    c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

    Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала – проблема №1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус – винт – двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по очевидным экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение.

    Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами.

    1. ¶ Т = α × ¶2 T
    ¶ t ¶ х2
     
    2. ¶ С = D × ¶2 T
    ¶ t ¶ х2
     
    3. ¶ u = 1 × ¶2 T
    ¶ t RC ¶ х2

    1- уравнение теплопроводности (закон Фурье), 2- уравнение диффузии (закон Фика), 3-уравнение электропроводности (закон Ома).

    Источник