Какие органоиды содержатся в клетках бактерий

1. Особенности строения бактериальной клетки. Основные органеллы и их функции

Отличия бактерий от других клеток

1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.

2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.

3. В бактериальной клетке отсутствуют аппарат Гольджи, эндоплазматическая сеть, митохондрии.

4. Роль митохондрий выполняют мезосомы – инвагинации цитоплазматической мембраны.

5. В бактериальной клетке много рибосом.

6. У бактерий могут быть специальные органеллы движения – жгутики.

7. Размеры бактерий колеблются от 0,3–0,5 до 5—10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.

В бактериальной клетке различают:

1) основные органеллы:

а) нуклеоид;

б) цитоплазму;

в) рибосомы;

г) цитоплазматическую мембрану;

д) клеточную стенку;

2) дополнительные органеллы:

а) споры;

б) капсулы;

в) ворсинки;

г) жгутики.

Цитоплазма представляет собой сложную коллоидную систему, состоящую из воды (75 %), минеральных соединений, белков, РНК и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.

Нуклеоид – ядерное вещество, распыленное в цитоплазме клетки. Не имеет ядерной мембраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране. Содержит около 60 млн пар оснований. Это чистая ДНК, она не cодержит белков гистонов. Их защитную функцию выполняют метилированные азотистые основания. В нуклеоиде закодирована основная генетическая информация, т. е. геном клетки.

Наряду с нуклеоидом в цитоплазме могут находиться автономные кольцевые молекулы ДНК с меньшей молекулярной массой – плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.

Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц – 30 S и 50 S. Рибосомы отвечают за синтез белка. Перед началом синтеза белка происходит объединение этих субъединиц в одну – 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.

Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.

Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ. К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др.

Данный текст является ознакомительным фрагментом.

Похожие главы из других книг:

Анатомия бактериальной клетки
В предыдущей главе мы познакомились с тремя главнейшими типами бактериальных клеток. Одни из них имеют форму шариков, другие — палочек или цилиндриков, а третьи представляют подобие спирали.Какова же внешняя и внутренняя структура

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ
1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

ЦАРСТВА БАКТЕРИИ И ГРИБЫ
ОСОБЕННОСТИ СТРОЕНИЯ И ЖИЗНЕДЕЯТЕЛЬНОСТИ. РОЛЬ В ПРИРОДЕ И ЖИЗНИ ЧЕЛОВЕКА
1. Найдите соответствие. Составьте логические пары, выписав буквенные обозначения, соответствующие цифровым обозначениям.I. КоккиII. БациллыIII. ВибрионыIV. СпириллыA.

§ 30. Особенности строения нервной системы амфибий
Нервная система амфибий имеет много сходных черт с рыбами, но обладает и рядом особенностей. Хвостатые и бесхвостые амфибии приобрели конечности, что повлекло за собой изменение организации спинного мозга. Спинной мозг

§ 42. Морфологические особенности строения птиц
Биологическое разнообразие, использование различных типов питания и освоение всех мало-мальски пригодных для жизни территорий выглядят как большой эволюционный успех птиц. Парадоксально, что эти преимущества были

3. Метаболизм бактериальной клетки
Особенности метаболизма у бактерий:1) многообразие используемых субстратов;2) интенсивность процессов метаболизма;3) направленность всех процессов метаболизма на обеспечение процессов размножения;4) преобладание процессов распада

Характерные особенности строения нервной системы собак
Головной мозг собаки округлый и короткий с небольшим числом четко выраженных извилин, у собак разных пород отличается по форме и массе. Сосцевидное тело промежуточного мозга включает два бугорка. Пирамиды

5.3.1 Концепция формирования митохондрий и хлоропластов путем симбиоза бактериальной клетки и раннего эукариота
Около 2 млрд лет тому назад на Земле создалась критическая для дальнейшего развития жизни ситуация. Фотосинтезирующие бактерии, размножившись, стали

5.2. Основные функции биосферы
В составе биосферы присутствуют вещества, которые различаются между собой по ряду признаков: природные вещества, живое вещество, биогенное вещество, косное вещество, биокосное вещество, органическое вещество, биологически активное

Источник

[1]Клетки прокариот не имеют оформленного ядра и многих органоидов, присущих клеткам эукариот. Прокариоты возникли на Земле несколько миллиардов лет назад и представлены исключительно одноклеточными организмами. Сукариоты состоят из одной или нескольких клеток, однако все клетки имеют общий план строения. В таблице сравниваются клетки бактерий, растений, животных и грибов по морфологическим признакам.

Клеточная структураФункцияБактерииРастенияЖивотныеГрибыЯдроХранение наследственной информации, синтез РНКНе имеютсяЯдро обязательная и существеннейшая часть живой клетки всех эукариотических организмов. Придает клетке форму, определяя рамки ее роста, обеспечивает структурную и механическую поддержку, тугое напряженное состояние оболочек, защиту от внешних факторов, запасает питательные вещества. Ядро или ядерная оболочка (хромосомы, из-за наличия нуклеиновых кислот) они отвечают за хранение, передачу и воспроизведение наследственной информации от родителя к потомкуУ большинства грибов оно обычно небольших размеров, окружено двойной мембраной, круглое, удлиненное, расположено либо в центре, либо у клеточной оболочки или перегородки. Клетки гиф содержат одно или несколько ядер. В ядре обычно находится одно ядрышко, но иногда оно отсутствует. Основная функция ядра — репликация ДНК и перенос генетической информации в цитоплазму через РНК. К особенностям ядерного аппарата грибов относится наличие дикарионов (n + n), спаренных ядер в клетке после слияния цитоплазмы. Другая особенность ядер — способность передвигаться из одной клетки в другую.
Читайте также:  Какие хлориды могут содержаться в воде
Клеточная мембранаВыполняет барьерную, транспортную, матричную, механическую, рецепторную, энергетическую, ферментативную и маркировочную функции(цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае. Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.Между клеточной стенкой и цитоплазматической мембраной располагаются ломасомы – мембранные структуры, имеющие вид многочисленных пузырьков. В зависимости от происхождения различают настоящие ломасомы и плазмалеммасомы. Последние представляют собой производное плазмалеммы.КапсулаПредохраняет бактерии от повреждений и высыхания. Создаёт дополнительный осмотический барьер и является источником резервных веществ. Препятствует фагоцитозу бактерийслизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая чётко очерченные внешние границы. НетНетНетКлеточная стенкаПолисахаридная оболочка над клеточной мембраной, через неё происходит регуляция воды и газов в клетке. Не проницаема даже для мелких молекул. Не препятствует диффузному движениюоболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. есть, образована пектином или муреиномоболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции.Образована целлюлозой.Нетоболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции.есть, образована хитиномКонтакты между клеткамиСвязывание между собой клеток ткани. Транспорт веществ между клетками.НетПлазмодесмы — микроскопические цитоплазматические мостики, соединяющие соседние клетки растений.Десмосомы— один из типов межклеточных контактов, обеспечивающих прочное соединение клеток (как правило, эпителиальной или мышечной ткани) у животных. Функция десмосом заключается главным образом в обеспечении механической связи между клетками.Септы стенка, разделяющая полость на части, например, маточная перегородка. Термин «септа» используется также для обозначения перегородок между соседними клетками или внутри септированных клетокХромосомыНуклеопротеиновый комплекс, содержащий ДНК, а также гистоны и гистоноподобные белкиНуклеоидЕстьЕстьЕстьПлазмидыХранение геномной информации, которая кодирует ферменты, которые разрушают антибиотики, тем самым позволяют избегать их губительного воздействияЕстьНетНетНетЦитоплазмаСодержит в себе органеллы клетки и равномерно распределяет питательные вещества по клетке.ЕстьЕстьЕстьЕстьМитохондрииОрганоиды, принимающие участие в превращении энергии в клетке. Имеют внутренние мембраны, на которых осуществляется синтез АТФНетЕстьЕстьЕстьАппарат ГольджиПроизводит синтез сложных белков, полисахаридов, их накопление и секрециюНетЕстьЕстьЕстьЭндоплазматический ретикулум / Эндоплазматическая сеть (ЭПС)Выполняет синтез и обеспечивает транспорт белков и липидовНетЕстьЕстьЕстьРибосомыОрганоиды, состоящие из двух субъединиц, осуществляют синтез белка (трансляцию).ЕстьЕстьЕстьЕстьЦентриолиВо время деления клетки образует веретено деленияНетПрисутствуют у низших растенийЕстьНетПластидыДвухмембранные структуры, в которых происходят реакции фотосинтеза (хлоропласты), происходит накопление крахмала (лейкопласты), придают окраску плодам и цветкам (хромопласты)НетЕстьНетНетЛизосомыПроизводят расщепление различных органических веществНетОбычно не видныЕстьЕстьПероксисомыПроизводят синтез и транспорт белков и липидовНетЕстьЕстьЕстьВакуолиНакапливают клеточный сок. Для перемещения бактериальных клеток в толще воды. Поддерживает напряжённое состояние оболочек клетокАэросомыЕстьЕстьЕстьЦитоскелетОпорно-двигательная система клетки. Изменения в белках цитоскелета приводят к изменению формы клетки и расположению в ней органоидов.БываетЕстьЕстьЕстьМезосомыАртефакты, возникающие во время подготовки образцов для электронной микроскопииЕстьНетНетНетПилиСлужат для прикрепления бактериальной клетки к различным поверхностямЕстьНетНетНетОрганеллы для перемещенияСлужат для перемещения в пространстве (реснички, жгутики и др.)ЕстьЕстьЕстьНет

Источник

Строение любого организма (и механизма, кстати, тоже) напрямую зависит от выполняемых функций. Например, для человека самый простой способ передвижения – ходьба, поэтому у нас есть ноги, автомобиль создан для езды, поэтому у него вместо ног колеса. Точно так же функции клетки бактерии определяют ее строение. И каждая из ее внутренних структур в точности соответствует своим функциям.

Зачем нужны одноклеточные организмы

Бактерии стояли у истоков жизни на нашей планете. Их вклад в образование полезных ископаемых и плодородных почв сложно переоценить. Они поддерживают баланс между углекислым газом и кислородом в атмосфере. Их способность разрушать отмершие организмы позволяет возвращать в природу необходимые питательные вещества. В организме человека многие процессы, например, пищеварение, не смогут протекать без их участия. Но те же самые бактериальные клетки, помогающие организму выжить, в определенных условиях могут нести болезни или смерть.

В зависимости от предназначения бактерии различаются по строению. Так, микроорганизмы, выделяющие кислород, обязаны иметь хлоропласты; клетки, способные передвигаться, всегда оснащены жгутиками; бактерии, выживающие в агрессивной среде, не могут обойтись без защитной капсулы и т.д. Некоторые из структурных элементов клетки существуют постоянно, другие ее компоненты возникают по мере необходимости или присущи только определенным видам бактерий. Но каждый элемент ее строения является примером идеального соответствия структуры выполняемым функциям.

Читайте также:  В каких шампунях не содержится сульфат

Как устроена бактерия

Бактериальный организм – это всего лишь одна клетка. Вместо привычных органов, отвечающих за те или иные функции, у нее есть только своеобразные включения, именуемые органеллами. Их набор может быть различным в зависимости от вида клетки или условий ее существования, но некий обязательный комплект внутренних структур в бактерии присутствует постоянно. Именно они характеризуют клетку как бактериальную.

Бактериальная клетка относится к прокариотам – безъядерным одноклеточным организмам. Это означает, что в ее строении отсутствует мембрана, отделяющая ядро от цитоплазмы. Роль ядра в бактерии выполняет нуклеоид (замкнутая молекула ДНК). В прокариотической клетке есть основные и дополнительные органеллы (структуры). К ее основным структурам относят:

  • нуклеоид;
  • клеточную стенку (грамположительный или грамотрицательный защитный слой);
  • цитоплазматическую мембраны (тонкую прослойку между клеточной стенкой и цитоплазмой);
  • цитоплазму, в которой находятся нуклеоид и рибосомы (молекулы РНК).

Дополнительными органеллами (органоидами) клетка обзаводится при неблагоприятных условиях. Они могут появляться и исчезать в зависимости от окружающей среды. К необязательным структурам клетки относят капсулы, пили, споры, различные включения типа плазмид или зерен волютина.

Ядро в безъядерной клетке

Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала. Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей. Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.

Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп. При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла. После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.

Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.

Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК. Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов. Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.

Каркас для одноклеточных

Клеточная стенка выполняет формообразующую функцию, т. е. одновременно работает «скелетом» для клетки и заменяет ей кожу. Эта жесткая наружная оболочка:

  • защищает бактериальные «внутренности»;
  • отвечает за форму бактерий;
  • транспортирует питательные вещества внутрь и выводит отходы наружу.

Встречаются бактериальные клетки округлой (кокки), извилистой (вибрионы, спириллы), палочкообразной формы. Есть микроорганизмы похожие на колбочки, звездочки, кубики или имеющие С-образный вид.

Механические и физиологические функции (защита и транспорт) бактериальной клеточной стенки зависят от ее строения. Изучать строение клеточной стенки удобно с помощью метода Грама. Этот датчанин предложил способ окраски бактерий анилиновыми красителями. В зависимости от реакции клеточной оболочки на краску различают:

  1. Грамположительные (поддающиеся окраске) бактерии. Их оболочка состоит из одного слоя, внешняя мембрана отсутствует.
  2. Грамотрицательные бактерии имеют оболочку, не удерживающую краситель (после промывки стенка обесцвечивается). Их наружная оболочка намного тоньше, чем у грамположительных, при этом она имеет два слоя – наружную мембрану и располагающуюся под ней бактериальную стенку.

Такое разделение бактерий имеет большое значение в медицинских исследованиях – чаще всего патогенные микробы имеют грамположительную стенку. Если анализ выявил грамположительные бактерии, то есть повод для переживаний. Грамотрицательные клетки намного безопасней. Некоторые из них постоянно присутствуют в организме и могут представлять угрозу только в случае неконтролируемого размножения. Это так называемые условно-патогенные бактерии.

Внешняя мембрана грамотрицательных бактерий расширяет функции бактериальной стенки. Меняется ее проницаемость и транспортные свойства. Внешняя мембрана имеет различные каналы (поры), избирательно пропускающие вещества внутрь клетки – полезные проходят свободно, а токсины отторгаются. То есть наружный слой грамотрицательной клетки выполняет функцию «решета» для молекул. Этим можно объяснить большую устойчивость грамотрицательных организмов к неблагоприятным условиям: всевозможным ядам, химическим веществам, ферментам, антибиотикам.

В биологии «слоенный пирог» из клеточной стенки и цитоплазматической мембраны называют клеточной оболочкой.

Что такое ЦПМ и мезосомы

Между клеточной стенкой и цитоплазмой расположен еще один органоид – цитоплазматическая мембрана (ЦПМ). В ее функции входит ограничение внутреннего содержимого клетки, поддержание ее формы, защита от проникновения агрессивных факторов и беспрепятственный допуск питательных веществ. По сути, это еще одно молекулярное «сито».

Через цитоплазматическую мембрану свободно проходят электроны (энергия) и транспорт материалов, необходимых для существования клетки. Различают два активных процесса, протекающих через мембрану:

  • эндоцитоз – проникновение веществ внутрь бактерии;
  • экзоцитоз – выведение отходов.

В процессе эндоцитоза мембрана образует внутренние складки, которые затем трансформируются в пузырьки (вакуоли). В зависимости от выполняемых функций различают два вида эндоцитоза:

  1. Фагоцитоз («поедание»). Эта функция доступна некоторым видам бактерий, их называют фагоцитами. Такие клетки создают из цитоплазматической мембраны своеобразный мешок, обволакивающий поглощаемую частицу (фагоцитозную вакуоль). Примером могут служить лейкоциты крови, «съедающие» чужеродные частицы или бактерии.
  2. Пиноцитоз («выпивание») – это поглощение жидкостей. При этом образуются пузырьки различного размера, иногда очень мелкие.
Читайте также:  Какие химические соединения содержатся в сыворотке крови но отсутствуют

Экзоцитоз (выведение) действует в противоположном направлении. С его помощью из клетки выводятся непереваренные остатки и клеточный секрет.

Помимо этого, цитоплазматическая мембрана:

  • регулирует давление жидкости внутри клетки;
  • принимает и обрабатывает химическую информацию извне;
  • участвует в процессе деления клетки;
  • отвечает за отращивание жгутиков и их движение;
  • регулирует синтез клеточной стенки.

Внутренняя бактериальная мембрана в зависимости от выполняемых клеткой функций образует мезосомы (внутренние складки). Примером могут служить ламеллы и тилакоиды в одноклеточных, живущих за счет фотосинтеза. Тилакоиды представляют собой стопки плоских мешочков, образованных внутренними складками мембраны (мезосомами), в которых протекает фотосинтез, а ламеллы – это те же вытянутые в длину мезосомы, соединяющие между собой стопки тилакоидов.

У грамположительных бактерий мезосомы хорошо развиты и довольно сложно организованы, в отличие от грамположительных. Различают три вида мезосом:

  • пластинчатые (ламеллы);
  • пузырьки (везикулы с запасом питательных веществ);
  • трубочки (тубулярные мезосомы).

Микробиологи пока не пришли к окончательному выводу – являются ли мезосомы основной структурой бактериальной клетки или только усиливают выполняемые ею функции.

Рибосомы – основа белковой жизни

Цитоплазма бактерий – внутренняя полужидкая (коллоидная) составляющая клетки, в которой находятся все органоиды (нуклеоид, плазмиды, мезосомы и прочие включения). Одна из основных функций цитоплазмы – создавать комфортные условия для рибосом.

Рибосома – важнейший немембранный органоид клетки, состоящий из двух частей: большой и малой субъединиц (полипептидов, составляющих белковый комплекс). Функция рибосом – синтез белка в клетке. Рибосомы – это рибонуклеопротеиновые частицы размером примерно до 20 нм. В клетке их может одновременно быть от 5 000 до 90 000. Это самые маленькие и самые многочисленные органоиды прокариот. Большая часть бактериальной РНК расположена именно в рибосомах, кроме того, в их состав входят белки.

Рибосомы отвечают за синтез белков из аминокислот. Процесс протекает по схеме, заложенной в генетической информации РНК. Считается, что эволюция рибосом началась в добелковую эру. Со временем аппарат биосинтеза совершенствовался, но основную функцию в нем продолжает играть РНК. Таким образом, рибосомы – поставщики основного компонента жизнедеятельности белковых форм – сами опираются на РНК, а не на белковую составляющую.

Проблема зарождения жизни на Земле представляет своеобразный парадокс – ДНК (дезоксирибонуклеиновая кислота), несущая генетическую информацию, не может сама себя размножить, ей нужен некий катализатор, а белки, отличный катализатор, не могут образоваться без ДНК. Возникает парадокс: курицы и яйца или «что было раньше?».

Оказалось, в начале была РНК (рибонуклеиновая кислота)! Все ключевые стадии биосинтеза белка (передачу информации, работу катализатора, транспорт аминокислот) взяла на себя РНК, составляющая основу рибосом. Это послужило одним из доказательств существования жизни «до ДНК». Гипотеза о «мире РНК» пока не нашла экспериментального подтверждения, но исследования нуклеиновых кислот остаются одним из самых «горячих» направлений науки.

Дополнительные структуры прокариот

Как любое живое существо, бактериальная клетка стремится обезопасить себя, создавая различные дополнительные элементы. К поверхностным структурам относятся:

  1. Капсула. Это поверхностный слизистый слой, образующийся вокруг клетки как реакция на окружающую среду. Капсула не только дает бактерии дополнительную защиту, но и может содержать запас питательных веществ «на черный день».
  2. Жгутики. Длинные (длиннее самой клетки) очень тонкие нити, прикрепленные к ЦПМ и стенке, работают моторчиком для свободного перемещения бактерий. Могут располагаться по всей поверхности бактерии или расти пучками по ее краям.
  3. Пили (ворсинки). Они отличаются от жгутиков размерами (тоньше и намного короче). В функции пилей не входит перемещение, но они отвечают за крепление (привязку) бактерий к другим микроорганизмам или поверхностям. Еще пили участвуют в водно-солевом обмене и питательном процессе.
  4. Споры. Это гарантия для микроорганизмов пережить любые неблагоприятные факторы (отсутствие воды или пищи, агрессивная среда). Они образуются внутри бактерий, в основном грамположительных. Однако этот способ обеспечивает только выживание, но не размножение (как в случае грибных спор).

Внутренние дополнительные включения могут быть как активными (хлоросомы фотосинтезирующих клеток), так и пассивными (запасы питания). У бактерий, живущих в воде, есть газовые вакуоли, крохотные пузырьки воздуха, отвечающие за их плавучесть.

Питательные вещества бактерий откладываются в различных гранулах (липиды, волютин). Липиды обеспечивают бактерию запасом углерода, дающим энергию в отсутствии других источников. Волютин (зерна, содержащие полифосфаты), становится источником фосфора, когда в окружающей среде его недостаточно. Запасы волютина тоже могут служить источником энергии, хотя их роль не так значительна. Дополнительными структурами цианобактерий являются запасы азота, для серобактерий – отложения молекулярной серы. Основная характеристика всех включений с запасами «на черный день» – они обязательно изолированы от цитоплазмы и не могут оказывать на клетку воздействие в нормальных условиях. В противном случае может быть передозировка химических элементов и бактерия пострадает.

Структуры бактериальной клетки, как основные, так и дополнительные, четко выполняют свои функции, сохраняя и продлевая ее жизнеспособность. Информация, содержащаяся в РНК и ДНК прокариот, позволяет клетке быстро реагировать на изменение условий существования и принимать необходимые меры для сохранения микроорганизма и успешного выполнения всех функций, заложенных в него природой.

Источник