Какие неорганические соединения проявляют амфотерные свойства

Какие неорганические соединения проявляют амфотерные свойства thumbnail

      Амфотерность (от др.-греч. амфотеро — «двойственный»,
«обоюдный») — способность некоторых соединений проявлять в зависимости от
условий как кислотные, так и основные свойства.

    Понятие амфотерность как характеристика
двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л.
Тенаром
.

    Амфотерными называются
оксиды и гидроксиды, которые проявляют и основные и кислотные свойства в
зависимости от условий.

Наиболее
часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды):

ZnO,
Zn(OH)2, BeO, Be(OH)2, PbO, Pb(OH)2, SnO,
Sn(OH)2, Al2O3, Al(OH)3, Fe2O3,
Fe(OH)3, Cr2O3, Cr(OH)3

Свойства амфотерных соединений
запомнить не сложно: они взаимодействуют с 

ОСНОВНЫЕ СВОЙСТВА

При взаимодействии с кислотами все просто. Амфотерные соединения ведут себя как основания:

Оксиды:

Al2O3 + 6HCl =
2AlCl3 + 3H2O;

ZnO + H2SO4 = ZnSO4 +
H2O;

BeO + HNO3 = Be(NO3)2 +
H2O

Гидроксиды:

Fe(OH)3 + 3HCl = FeCl3 +
3H2O;

Pb(OH)2 + 2HCl = PbCl2 +
2H2O

   Таким образом, при описании основных свойств записывают хорошо знакомые уравнения реакций обмена.

КИСЛОТНЫЕ СВОЙСТВА

   Сложней для понимания реакция со щелочью. Рассмотрим на примере взаимодействия гидроксида цинка с гидроксидом калия при сплавлении. Амфотерные соединения взаимодействуя с основаниями, ведут себя как кислоты. Вот и запишем гидроксид
цинка Zn(OH)2 как
кислоту. У кислоты водород спереди, вынесем его: H2ZnO2. И реакция щелочи с гидроксидом будет протекать как будто он –
кислота. «Кислотный остаток» ZnO22- двухвалентный:

2KOH(тв.) + H2ZnO2(тв.)    =     K2ZnO2 + 2H2O

     Полученное
вещество K2ZnO2 называется метацинкат калия (или просто
цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H2ZnO2 (солями такие соединения называть не совсем правильно, но
для собственного удобства мы про это забудем). 

   Гидроксид цинка записывать в виде H2ZnO2 не принято. Пишем как обычно Zn(OH)2,
но подразумеваем (для собственного удобства), что это кислота H2ZnO2:
                                                      

2KOH(тв.) + Zn(OH)2(тв.) 
=    K2ZnO2 + 2H2O

     С гидроксидами при сплавлении, в которых
2 группы ОН, все будет так же как и с цинком:

Be(OH)2(тв.) + 2NaOH(тв.)  =Na2BeO2 2H2O   (метабериллат натрия, или бериллат)

Pb(OH)2(тв.) + 2NaOH(тв.) = Na2PbO2 2H2O   (метаплюмбат натрия, или плюмбат)

 С амфотерными гидроксидов с тремя OH— группами  (Al(OH)3, Cr(OH)3, Fe(OH)3) немного
иначе.

    Разберем
на примере гидроксида алюминия: Al(OH)3, запишем в виде кислоты: H3AlO3, но в таком виде не оставляем, а выносим оттуда воду:

H3AlO3 – H2O → HAlO2 + H2O.

Вот с этой «кислотой» (HAlO2) мы и работаем:

HAlO2 + KOH = H2O + KAlO2 
(метаалюминат калия, или просто алюминат)

  Но гидроксид алюминия HAlO2 записывать нельзя, записываем как обычно, но подразумеваем кислоту HAlO2:

      Al(OH)3(тв.) + KOH(тв.) =  2H2O + KAlO2 (метаалюминат калия)

То
же самое и с гидроксидом хрома (при сплавлении):

Cr(OH)3 → H3CrO3 → HCrO2;

Cr(OH)3(тв.) + KOH(тв.)  =  2H2O + KCrO2 
(метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли
хромовой кислоты).

*С гидроксидами содержащими четыре группы
ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH)4 → H4SnO4 → H2SnO3;

Pb(OH)4 → H4PbO4 → H2PbO3

Следует
помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью
окисления +2 (
Sn(OH)2, Pb(OH)2), и +4 (Sn(OH)4,Pb(OH)4).

Оксид

Гидроксид

Гидроксид в виде
кислоты

Кислотный остаток

Соль

Название соли

BeO

Be(OH)2

H2BeO2

BeO22-

K2BeO2

Метабериллат (бериллат)

ZnO

Zn(OH)2

H2ZnO2

ZnO22-

K2ZnO2

Метацинкат (цинкат)

Al2O3

Al(OH)3

HAlO2

AlO2—

KAlO2

Метаалюминат (алюминат)

Fe2O3

Fe(OH)3

HFeO2

FeO2—

KFeO2

Метаферрат (НО НЕ ФЕРРАТ)

SnO

Sn(OH)2

H2SnO2

SnO22-

K2SnO2

СтаннИТ

PbO

Pb(OH)2

H2PbO2

PbO22-

K2PbO2

БлюмбИТ

SnO2

Sn(OH)4

H2SnO3

SnO32-

K2SnO3

МетастаннАТ (станнат)

PbO2

Pb(OH)4

H2PbO3

PbO32-

K2PbO3

МетаблюмбАТ (плюмбат)

Cr2O3

Cr(OH)3

HCrO2

CrO2—

KCrO2

Метахромат (НО НЕ ХРОМАТ

  * Выше было рассмотрено взаимодействие амфотерных соединений с твердыми щелочами при сплавлении, т.е. в отсутствии воды. При взаимодействии с растворами щелочей образуются комплексные соединения:

Al(OH)3 + KOH → K[Al(OH)4] 

(тетрагидроксоалюминат калия);

Al(OH)3 + 3KOH → K3[Al(OH)6] 

(гексагидроксоалюминат калия).

    С растворами щелочей реагируют и амфотерные оксиды. Следует обратить внимание, что в уравнении реакции вода записывается, как исходное вещество, т.е. в левой части уравнения:

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4];

Al2O3 + 6NaOH + 3H2O → 2Na3[Al(OH)6].

   Продукты реакций относятся к классу солей и являются растворимыми. Следовательно, при диссоциации распадаются на катион металла и анионы кислотных остатков

[Al(OH)4]- или [Al(OH)6]3-.

   Какой продукт писать, не имеет значения. Главное чтобы все индексы были верно проставлены и сумма всех зарядов равнялась нулю.

Читайте также:  Какие свойства проявляет соль хрома

 ПЕРЕХОДНЫЕ МЕТАЛЛЫ

    Элементы, образующие амфотерные оксиды и гидроксиды, относятся к металлам. Они как все металлы реагируют с разбавленными кислотами:

                         2Al + 6HCl = 2AlCl3 + 3H2;

                        Zn + H2SO4 = ZnSO4 + H2

   Наиболее активные металлы, образующие амфотерные оксиды и гидроксиды (алюминий, берилий, цинк), реагируют со щелочами:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2↑;

2Al + 6NaOH + 6H2O → 2Na3[Al(OH)6] + 3H2

ТРЕНИРУМСЯ!!!

Амфотерные гидроксиды

Амфотерные оксиды

Химические свойства амфотерных гидроксидов

Химические свойства амфотерных оксидов

Источник

ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ПО ХИМИИ

БИЛЕТ №1

Вопрос 1. Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете теории строения атома. Значение периодического закона для развития науки.

Ответ. В 1869 г. Д. И. Менделеев сформулировал периодический закон. Современная формулировка этого закона звучит так: «Свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер их атомов (величины атомных масс элементов)».

Периодическая система химических элементов – это графическое изображение пародического закона. Она представлена в виде таблицы, содержащей 7 периодов, 10 рядов и 8 групп элементов. Каждая группа состоит из двух подгрупп – главной и побочной.

Для элементов, объединенных в одну группу, характерны следующие закономерности:

1. Высшая валентность элементов в соединениях с кислородом соответствует номеру группы (исключение: медь может быть и двухвалентной).

2. В главных подгруппах с увеличением относительных атомных масс (при движении сверху вниз) усиливаются металлические свойства элементов и ослабевают неметаллические.

3. При движении по периоду слева направо усиливаются неметаллические свойства и ослабевают металлические.

Порядковый номер химического элемента (Z) совпадают с зарядом ядра его атома.

Для атома 1939K (А – массовое число): Z = 19 (число протонов) и N=A-Z=39-19=20 (число нейтронов).

Сущность периодичности состоит в том, что при возрастании положительных зарядов ядер атомов химических элементов наблюдается периодическое повторение химических элементов с одинаковым числом валентных (внешних) электронов. Этим объясняется периодическая повторяемость свойств элементов и их соединений.

Значение периодического закона

1. Закон сыграл большую роль в создании современной теории строения атома, которая подтвердила его положения.

2. Явление периодичности в изменении свойств химических элементов было объяснено электронными структурами атомов.

3. Возрастание числа химических элементов в периодах (2-8, 18-32) привело ученых к мысли о заполнении энергетических уровне соответствующим числом электронов.

4. На основе периодического закона удалось предсказать и открыть заурановые элементы.

5. Периодический закон и периодическая система химических элементов имели большое значение для открытия радиоактивных изотопов и областей их применении.

6. В периодическом законе и периодической системе химических элементов ярко проявляются общие законы развития природы:

• закон перехода количества в качество,

• закон единства и борьбы противоположностей,

• закон отрицания отрицания.

Вопрос 2. Амфотерность неорганических и органических соединений.

Ответ. Амфотерные элементы – элементы, оксиды и гидроксиды которые проявляют амфотерные свойства.

К амфотерным элементам относятся: алюминий, цинк, хром, желез, марганец и др.

Амфотерные оксиды – это оксиды элементов, проявляющие свойства, характерные и для основных оксидов

Al2O3 + 2NaOH сплавление2NaAlO2 + H2O,

(твердый) алюминат натрия

Al2O3 + 6HCl = 2AlCl3 + 3H2O

Амфотерные гидроксиды – гидроксиды, проявляющие свойства, характерные и для кислот, и для оснований:

Al(OH)3 + 3HCl = AlCl3 +3H2O (Al(OH)3 как основание),

Al(OH)3 +NaOH + 2H 2O = Na[Al(OH) 4(H 2O) 2) ] (Al(OH)3 как кислота).

Чем выше степень окисления элемента, тем более сильные кислотные свойства проявляют его оксиды (например, хром).

Среди органических соединений амфотерными свойствами обладают аминокислоты благодаря наличию двух функциональных групп:NH2 (аминогруппа) и СООH (карбоксильная группа).

Для аминокислот характерны свойства, присущие аминам и карбоновым кислотам.

1. Свойства кислоты:

а) взаимодействие с металлом:

2NH2CH2COOH + 2Na = 2NH2CH2COONa + H2 ↑;

б) взаимодействие с оксидом металла:

2NH2CH2COOH + MgO = (NH2CH2COO)2 Mg + H2O;

в) взаимодействие с основанием:

NH2CH2COOH + NaOH = NH2CH2COONa + H2O;

г) взаимодействие с солью:

2NH2CH2COOH + Na2CO3 = 2NH2CH2COONa + H2O + CO2↑;

д) реакция этерификации:

t

NH2CH2COOH + HOC2H5 = NH2CH2COOC2H5 + H2O.

2. Свойства (как амин):

NH2CH2COOH + HCl = Cl- [+NH2CH2COOH] .

3. Поликонденсация(взаимодействие друг с другом):

NH2CH2COOH + H2NCH2COOH = NH2CH2 CONH CH2COOH + H2O;

пептидная группа

дипептид ɑ- аминоуксусной кислоты

Вопрос 3. Получите углекислый газ и докажите его наличие.

Ответ.

Получение

CaCO3 + 2HCl = CaCl2 + H2O + CO2 ↑,

мрамор

CaCO3 + 2H+ + Сl- = Ca2+ + 2Cl- + H2O + CO2 ↑,

CaCO3 + 2H+ = Ca2+ + H2O + CO2 ↑,

Доказательство

Сa(OH)2 +CO2 = CaCO3↓ + H2O

Читайте также:  Барий какие свойства проявляет

(осадок белого цвета)

При длительном пропускании углекислого газа через известковую воду осадок CaCO3 растворяется вследствие образования хорошо растворимой соли – гидрокарбоната кальция Ca(HCO3)2:

CaCO3 + H2O + CO2 = Ca(HCO3)2.

Оборудование и реактивы: мрамор, прибор для получения газов, соляная кислота (раствор), известковая вода, штатив с пробирками.

БИЛЕТ № 2

Вопрос 1. Многоатомные спирты, их строение свойства и применение.

Ответ.Многоатомные спирты – органические соединения, содержащие несколько гидроксильных групп, соединенных углеводородным радикалом.

CH2(OH) – CH2(OH) – этандиол-1,2, или этиленгликоль (двухатомный спирт),

CH2(OH)–CH(OH)–CH2(OH) – пропантриол-1,2,3, или пропиленгликоль, или глицерин (трехатомный спирт).

Физические свойства

Вязкие, сиропоподобные жидкости, без цвета и запаха, сладковатого вкуса, хорошо растворимые в воде. Температура кипения этиленгликоля – 197,6 ̊С, глицерина – 290 ̊С. Этиленгликоль – яд!

Химические свойства

1. Взаимодействие со щелочными металлами:

CH2(OH)CH2(OH) + 2Na = CH2(ONa)CH2(ONa) + H2↑.

2. Взаимодействие с галогеноводородами:

CH2(OH)CH2(OH) + 2HCl = CH2ClCH2Cl + 2H2O.

дихлорэтан

3. Нитрование:

CH2(OH)CH(OH)СH2(OH) + 3HNO3 Какие неорганические соединения проявляют амфотерные свойства CH2(ONO2)CH(ONO2)CH2(ONO2) + 3H2O. нитроглицерин

4. Качественная реакция на глицерин:

2CH2 (OH)CH(OH)CH2(OH) + Cu(OH)2

Какие неорганические соединения проявляют амфотерные свойства

глицерат меди(II)

(раствор ярко-синего цвета)

Получение

1. 3С2H4 + 2KMnO4 + 4H2O = 3CH2(OH)CH2(OH) + 2MnO2 + 2KOH.

2. CH2ClCH2Cl + 2NaOH = CH2(OH)CH2(OH) + 2NaCl.

3. 2C2H4 + O2Какие неорганические соединения проявляют амфотерные свойства 2H2C – CH2,

/

O

этиленоксид

H2C – CH2 + H2O = CH2(OH)CH2(OH)

/

O

4. CH3CHCH2 + O2Какие неорганические соединения проявляют амфотерные свойства CH2CHCHO + H2O,

акролен

CH2CHCHO + H2 = CH2CHCH2OH,

аллиловыйспирт

CH2CHCH2OH + H2O2 = CH2(OH)CH(OH)CH2(OH).

Применение

1. В производстве антифризов (веществ, понижающих температуру замерзания растворов).

2. В производстве лекарств (глицерин).

3. В производстве искусственного волокна.

4. В производстве взрывчатых веществ (глицерин).

5. В производстве алкогольных напитков.

6. В парфюмерии (глицерин).

7. Как смягчитель кожи и тканей (глицерин).

Источник

Перед изучением этого раздела рекомендую изучить следующие темы:

Классификация неорганических веществ

Классификация оксидов, способы их получения

Химические свойства основных оксидов

Химические свойства кислотных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами  и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например, оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

Al2O3 + 6HCl = 2AlCl3 + 3H2O

амфотерный оксид + кислотный оксид = соль

Al2O3 + 3SO3 = Al2(SO4)3

Al2O3 + CO2 ≠

Al2O3 + H2SiO3 ≠

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

МеталлыВ расплаве щелочиВ растворе щелочи

Степень окисле-ния  +2  (Zn, Sn, Be)

Соль состава X2YO2*. Например:   Na2ZnO2Комплексная соль состава Х2[Y(OH)4]*. Например: Na2[Zn(OH)4]
Степень окисле-ния  +3   (Al, Cr, Fe)Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или  Na3AlO3Na3[Al(OH)6] или Na[Al(OH)4 Комплексная соль состава Х3[Y(OH)6]* или реже  Х[Y(OH)4]. Например: Na[Al(OH)4]

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например:

амфотерный оксид + щелочь (расплав) = соль + вода

Al2O3 + 2NaOH = 2NaAlO2 + H2O

амфотерный оксид + щелочь (раствор) = комплексная соль

ZnO + 2NaOH + H2O = Na2[Zn(OH)4]

Какие неорганические соединения проявляют амфотерные свойства

4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

Al2O3 + Na2O = 2NaAlO2

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Читайте также:  На каких свойствах веществ основано применение алюминия для изготовления

Например, твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Na2CO3 + Al2O3 = 2NaAlO2 + CO2

Источник

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

щелочи и нерастворимые основания

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

примеры реакций нейтрализации

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

взаимодействие гидроксида железа серной и кремниевой кислотами

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

образование основных солей

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

взаимодействие щелочей с кислотными оксидами

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

Cu(OH)2 + SO3 <.p>

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

гидроксид железа и диоксид кремния не реагируют

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

NaOH взаимодействие с Al2O3 Al(OH)3 ZnO Zn(OH)2 при сплавлении

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

взаимодействие водных растворов щелочей с амфотерными оксидами и нидроксидами гидроксокомплексы

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

образвание гексагидроксоалюмината натрия

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

взаимодействие оснований с солями необходимые требования

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:

разложение гидроксида кальция

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:

разложение гидроксида меди температура

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

Взаимодействие гидроксида цинка с серной кислотой

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

гидроксиды трехвалентных металлов не реагируют с сернистой угольной и сероводородной кислотами

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Al(OH)3 SO3 реакция

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

NaOH водный раствор реакция с Al(OH)3

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

твердый NaOH реакция с Al(OH)3 при сплавлении

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Na2O + Al(OH)3 взаимодействие

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Al(OH)3 реакция разложения

Источник