Какие молекулы обладают диамагнитными свойствами

Какие молекулы обладают диамагнитными свойствами thumbnail

Одним из серьезных преимуществ метода МО ЛКАО по сравнению с МВС является более правильное описание магнитных свойств молекул и ионов, и в частности объяснение парамагнетизма молекулярного кислорода.

Взаимодействие химических веществ с магнитным полем порождает несколько эффектов. Среди них наиболее известным является ферромагнетизм. Намагниченные ферромагнетики (например, железо, кобальт, никель) магнитны — они обладают собственным магнитным нолем, которое проявляется во взаимодействии с другими ферромагнетиками. Ненамагни- ченные ферромагнетики притягиваются намагниченными.

Большая часть химических веществ (например, соли, оксиды, органические вещества) не относится к ферромагнетикам. Но и немагнитные в обычных условиях вещества взаимодействуют с внешним магнитным полем. Это проявляется в двух эффектах — парамагнетизме и диамагнетизме.

Парамагнетизм — явление втягивания немагнитного вещества в область сильного магнитного поля (вещество «притягивается магнитом»). Причина парамагнетизма — наличие в составе вещества частиц с собственным магнитным моментом. При воздействии внешнего поля хаотически расположенные из-за теплового движения магнитные моменты этих частиц ориентируются по полю и усиливают его.

Диамагнетизм — явление выталкивания немагнитного вещества из области сильного магнитного поля (вещество «отталкивается магнитом»). Причина диамагнетизма — наличие в веществе движущихся электронов, которые под действием внешнего поля порождают наведенный магнитный момент, ориентированный против поля.

Основной вклад в собственный магнитный момент атомов и молекул вещества вносят магнитные моменты неспаренных электронов. Чем больше суммарный спин электронов в атоме или молекуле, тем сильнее проявляется парамагнетизм вещества.

Следует особо подчеркнуть, что сказанное относится именно к химическим веществам с атомно-молекулярной структурой. В случае веществ с металлической связью картина взаимодействия вещества с магнитным полем значительно усложняется из-за появления значительного количества свободных электронов и сложной структуры кристаллической решетки, в узлах которой расположены электрически заряженные «атомные остовы» металлов. Все вместе это приводит к существенному увеличению диамагнитного вклада магнитных моментов индукционных токов, и такие вещества, как висмут, медь, золото, серебро, цинк, свинец, будучи в атомарном состоянии парамагнетиками, в виде простых веществ становятся диамагнетиками.

Структура молекулы кислорода 02 по МВС такова, что все валентные электроны а- и л-связей в ней образуют электронные пары и суммарный спин электронов молекулы равен нулю. Модель предсказывает, что кислород должен быть диамагнитным (см. рис. 2.4).

Как следует из диаграммы, построенной по методу МО (рис. 2.14), в молекуле кислорода присутствуют два неспаренных электрона на разрыхляющих 71^л и я2/, орбиталях. Их магнитные моменты складываются и дают отличный от нуля суммарный магнитный момент молекулы. В соответствии с этим метод МО ЛКА О предсказывает, что молекулы кислорода обладают магнитными свойствами и, следовательно, вещество кислород обладает парамагнетизмом.

Энергетическая диаграмма молекулы кислорода по методу МО ЛКАО

Рис. 2.14. Энергетическая диаграмма молекулы кислорода по методу МО ЛКАО

Эксперимент показывает, что магнитный момент молекулы кислорода равен 2,8 магнетонов Бора {магнетон Бора — единица элементарного магнитного момента). Собственный магнитный момент электрона, обусловленный его спином, равен одному магнетону Бора. Учитывая, что полный магнитный момент, кроме собственного электронного, включает в себя и орбитальный, связанный с движением электрона по орбитали, количественное совпадение весьма убедительно свидетельствует в пользу справедливости структуры молекулярных орбиталей на основании метода МО ЛКАО.

Кроме магнитных свойств анализ энергетических диаграмм МО ЛКАО дает возможность определить кратность Ксв, или порядок Псп химической связи:

Какие молекулы обладают диамагнитными свойствами

где ЛГСВЯЗ — общее число электронов на связывающих орбиталях; ЛГразр — общее число электронов на разрыхляющих орбиталях.

Эта величина соответствует «количеству черточек» в графических формулах химических веществ по Льюису. Чем больше величина Ксв, тем прочнее связь в молекуле или ионе.

Источник

Магнитные свойства молекул и ионов. Диа- и парамагнитные молекулы и их свойства.
Все вещества делят на парамагнитные и диамагнитные. Вещество называют парамагнитным, если его атомы( или молекулы) обладают магнитным моментом, и диамагнитным, если его атомы не обладают постоянным магнитным моментом.
 
Парамагнитные вещества обладают свойством втягиваться в магнитное поле, а диамагнитные вещества выталкиваются им.

Магнитные моменты атомов определяются главным образом суммарным моментом электронов в атоме.

Магнитные свойства молекул и ионов.  Диа- и парамагнитные молекулы.
— совокупность св-в, проявляющихся при взаимодействии вещества с магнитным полем. Важнейшим макроскопическим проявлением магнитных свойств является способность вещества создавать собственное магнитное поле.
Способность вещества взаимодействовать с внешним магнитным полем зависит от магнитных свойств, точнее, от магнитных моментов свободных атомов или молекул этого вещества, к-рые определяются главным образом их электронным строением. Магнитный момент атома состоит в основном из магнитного момента, обусловленного спином электрона (спин электрона — собственный механич. момент количества движения электрона), и из магнитного момента, обусловленного орбитальным движением электрона вокруг ядра атома. Магнитный момент ядра атома примерно в тысячу раз меньше магнитного момента электронной оболочки атома и при рассмотрении обычных магнитных свойств его можно не учитывать. Ядерный магнетизм проявляется в ядерном магнитном резонансе и в сверхтонкой структуре спектральных линий.
Диамагнетизм — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего поля.
Диамагнетизм можно рассматривать как следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Идеальный диамагнетизм носит некооперативный характер и характеризуется отрицательной, не зависящей от температуры магнитной восприимчивостью. Диамагнетизм входит в состав любого магнитного состояния вещества. В частности, это имеет место в ионах и молекулах с целиком заполненными электронными оболочками, например в инертных газах, в молекулах.
Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
 
Парамагнитные молекулы и их свойства.
Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
Парамагнитные тела притягиваются к магниту.
Парамагнитные вещества увеличивают магнитный поток катушки т. к. у них магнитная проницаемость более 1. В парамагнитных веществах под действием внешнего магнитного поля элементарные токи ориентируются так, что направление их совпадает с направлением тока обмотки.

Читайте также:  Какие целебные свойства петрушки

21.01.2014; 23:16

хиты: 4687

рейтинг:+1

Какие молекулы обладают диамагнитными свойствамиКакие молекулы обладают диамагнитными свойствами

Естественные науки

химия

Источник

Магнитные материалы, Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю точно), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о ещё более редких классах веществ по отношению к действию на них магнитного поля.

Классификация магнитных материалов и требования к ним
Магнитными веществами, или магнетиками, называются вещества, обладающие магнитными свойствами. Под магнитными свойствами понимается способность вещества приобретать магнитный момент, т.е. намагничиваться при воздействии на него магнитного поля. В этом смысле все вещества в природе являются магнетиками, так как при воздействии магнитного поля приобретают определенный магнитный момент. Этот результирующий макроскопический магнитный момент М представляет собой сумму элементарных магнитных моментов mi — атомов данного вещества.

Элементарные магнитные моменты могут быть либо наведены магнитным полем, либо существовать в веществе до наложения магнитного поля; в последнем случае магнитное поле вызывает их преимущественную ориентацию.
Магнитные свойства различных материалов объясняются движением электронов в атомах, а также тем, что электроны и атомы имеют постоянные магнитные моменты.
Вращательное движение электронов вокруг ядер атомов аналогично действию некоторого контура электрического тока и создает магнитное поле, которое на достаточном расстоянии представляется как поле магнитного диполя с магнитным моментом, значение которого определяется произведением тока и площади контура, который ток обтекает. Магнитный момент является векторной величиной и направлен от южного полюса к северному. Такой магнитный момент называется орбитальным.

Сам электрон имеет магнитный момент, который называется спиновым магнитным моментом.
Атом представляет собой сложную магнитную систему, магнитный момент которой является результирующей всех магнитных моментов электронов, протонов и нейтронов. Так как магнитные моменты протонов и нейтронов существенно меньше, чем магнитные моменты электронов, магнитные свойства атомов по существу определяются магнитными моментами электронов. У имеющих техническое значение материалов это прежде всего спиновые магнитные моменты.
Результирующий магнитный момент атома при этом определяется векторной суммой орбитальных и спиновых магнитных моментов отдельных электронов в электронной оболочке атомов. Эти два вида магнитных моментов могут быть частично или полностью взаимно скомпенсированы.

В соответствии с магнитными свойствами материалы делятся на следующие группы:
а) диамагнитные (диамагнетики),
б) парамагнитные (парамагнетики),
в) ферромагнитные (ферромагнетики),
г) антиферромагнитные (антиферромагнетики),
д) ферримагнитные (ферримагнетики),
е) метамагнитные (метамагнетики).

А) Диамагнетики
Диамагнетизм проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.
Диамагнетизм свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные круговые то­ки, т. е. добавочное круговое движение электронов вокруг направления магнитного поля. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю (независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован). У чисто диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным маг­нитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего маг­нитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполнен­ными электронными оболочками в атомах инертных газов, в молекулах водорода, азота.

Удлинённый образец диамагнетика в однородном магнитном поле ориентиру­ется перпендикулярно силовым линиям поля (вектору напряженности поля). Из неоднородного магнитного поля он вытал­кивается в направлении уменьшения напряжённости поля.

Индуцированный магнитный момент I, приобретаемый 1 молем диамагнитного вещества, пропорционален напряженности внешнего поля H, т.е. I=χН. Коэффициент χ называется молярной диамагнитной восприимчивостью и имеет отрицательный знак (т.к. I и H направлены навстречу друг другу). Обычно абсолютная величина χ мала (~10-6), например для 1 моля гелия χ = -1,9·10-6.

Классическими диамагнетиками являются так называемые инертные газы (He, Ne, Ar, Kr и Xe), атомы которых имеют замкнутые внешние электронные оболочки.

К диамагнетикам также относятся: инертные газы в жидком и кристаллическом состояниях; соединения, содержащие ионы, подобные атомам инертных газов (Li+, Be2+ , Al3+ , O2- и т.д.); галоиды в газообразном, жидком и твердом состояниях; некоторые металлы (Zn, Au, Hg и др.). Диамагнетиками, точнее сверхдиамагнетиками, с χД = — (1/4) ≈ 0,1, являются сверхпроводники; у них диамагнитный эффект (выталкивание внешнего магнитного поля) обусловлен поверхностными макроскопическими токами. К диамагнетикам относится большое число органических веществ, причём у многоатомных соединений, особенно у циклических (ароматических и др.), магнитная восприимчивость анизотропна (таблица 6.1).

Таблица 6.1 — Диамагнитная восприимчивость ряда материалов

Б) Парамагнетики
Парамагнетизм – свойство веществ (парамагнетиков) намагничиваться в направлении внешнего магнитного поля, и, в отличие от ферро-, ферри- и антиферромагнетизма, парамагнетизм не связан с магнитной атомной структурой, а в отсутствие внешнего магнитного поля намагниченность парамагнетика равна нулю.

Парамагнетизм обусловлен в основном ориентацией под действием внешнего магнитного поля Н собственных магнитных моментов µ частиц парамагнетического вещества (атомов, ионов, молекул). Природа этих моментов может быть связана с орбитальным движением электронов, их спином, а также (в меньшей степени) со спином атомных ядер. При µН « kТ, где Т – абсолютная температура, намагниченность парамагнетика М пропорциональна внешнему полю: М=χН, где χ – магнитная восприимчивость. В отличие от диамагнетизма, для которого χ < 0, при парамагнетизме восприимчивость положительна; её типичная величина при комнатной температуре (Т ≈ 293 К) составляет 10-7 – 10-4.

Парамагнетик – магнетик с преобладанием парамагнетизма и отсутствием магнитного атомного порядка. Парамагнетик намагничивается в направлении внешнего магнитного поля, т.е. имеет положительную магнитную восприимчивость, которая в слабом поле при не очень низкой температуре (т.е. вдали от условий магнитного насыщения) не зависит от напряженности поля. Поскольку свободная энергия парамагнетика понижается в магнитном поле, при наличии градиента поля он втягивается в область с более высоким значением напряжённости магнитного поля. Конкуренция диамагнетизма, появление дальнего магнитного порядка или сверхпроводимости ограничивают область существова­ния вещества в парамагнитном состоянии.

Парамагнетик содержит, по крайней мере, один из перечисленных ниже типов носителей парамагнетизма.

а) Атомы, молекулы или ионы с некомпенсированными магнитными моментами в основном или возбуждённом состояниях с энергией возбуждения Ei << kТ. Парамагнетики этого типа обладают ориентацией ланжевеновским парамагне­тизмом, зависящим от температуры Т по Кюри закону или Кюри – Вейса закону, в них возможно магнитное упоря­дочение. [Похожий по проявлениям магнетизм неоднородных систем малых ферро- или ферримагнитных однодоменных частиц (кластеров) в жидкостях или твердых матрицах выделен в особый вид – суперпарамагнетизм].

Этот тип носителей присутствует в парах металлов нечётной валентности (Na, Тl); в газе молекул О2 и NO; в некоторых органических молекулах со свободными радикалами; в солях, окислах и др. диэлектрических соединениях 3d-, 4f-, и 5f-элементов; в большинстве редкоземельных металлов.

б) Те же частицы, имеющие орбитальный магнитный момент в возбуждённом состоянии с энергией возбуждения Ei << kТ. Для таких парамагнетиков характерен не зависящий от температуры поляризационный парамагнетизм.

Этот тип носителей парамагнетизма проявляется в некоторых соединениях d- и f-элементов (соли Sm и Eu и др.).

в) Коллективизированные электроны в частично запол­ненных энергетических зонах. Им присущ сравнительно слабо зависящий от температуры спиновый Паули-парамагнетизм, как правило, усиленный межэлектронными взаимодействиями. В d-зонах спиновый парамагнетизм сопровождается заметным ванфлековским парамагнетизмом.

Подобный тип носителей преобладает в щелочных и щёлочноземельных металлах, d-металлах и их интерметаллических соединениях, актиноидах, а также в хорошо проводящих ион-радикальных органических солях

P/S материал из wiki
Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля (J↑↑H) и имеют положительную магнитную восприимчивость. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы  u > ~ 1.
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl3) и другие.
Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).

В) Ферромагнетики

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствие внешнего магнитного поля.

 

Свойства ферромагнетиков
1. Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
2. При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
3. Для ферромагнетиков характерно явление гистерезиса.
4. Ферромагнетики притягиваются магнитом.

Источник

Читайте также:  Какое свойство общества как системы не присуще подсистемам общества