Какие металлы содержатся в нефти

Микроэлеме́нты не́фти — химические элементы, присутствующие в нефти в количестве 0,02—0,03 % от общей её массы. Обнаружено более 60 микроэлементов, большая часть которых представлена металлами и содержится в основном в смолисто-асфальтеновых компонентах. Данные примеси определяются химическими, физико-химическими и физическими методами анализа.

Общая характеристика[править | править код]

В нефтях обнаружено более 60 элементов периодической системы химических элементов (выделены  жёлтым  цветом)[1]:

В среднем, концентрации этих микроэлементов уменьшаются в следующей последовательности[2]:

Cl → V → Fe → Ca → Ni → Na → K → Mg → Si → Al → I → Br → Hg → Zn → P → Mo → Cr → Sr → Rb → Co → Mn → Ba → Se → As → Ga → Cs → Ge → Ag → Sb → U → Hf → Eu → Re → La → Sc → Pb → Au → Be → Ti → Sn.

Общее количество микроэлементов в нефти редко превышает 0,02—0,03 % от общей её массы, что затрудняет выделение и идентификацию соединений, в которые эти химические элементы входят. Известно, что микроэлементы могут находиться в нефти в виде мелкодисперсных водных растворов солей, тонкодисперсных взвесей минеральных пород, а также в виде комплексов и молекулярных соединений с органическими веществами. Такие соединения подразделяют на 5 видов[3]:

  • элементоорганические соединения;
  • соли металлов, которые в кислотных функциональных группах замещают протон;
  • хелаты;
  • комплексы лигандов;
  • комплексы с гетероатомами или π-системой полиароматических асфальтеновых структур.

Металлы[править | править код]

Наибольшее количество микроэлементов в нефти представлено металлами. Металлические компоненты в основном содержатся в смолисто-асфальтеновых веществах (САВ) нефти. Ванадий, которого содержится в нефтях больше всего из этой группы, полностью концентрируется в САВ, а в масляных фракциях этот элемент практически полностью отсутствует. Никель также в основном находится в высокомолекулярных компонентах нефти, однако в небольших количествах он встречается и в маслянистых фракциях тяжёлой нефти. Также в относительно больших концентрациях в нефти присутствуют железо, щелочные и щелочноземельные металлы[4].

Концентрация ванадия достигает 10−2 %. Наиболее изученной формой данного металла в нефти являются его комплексы с порфиринами (ванадилпорфирины). Существуют также и непорфириновые соединения ванадия, их, как правило, разделяют на две группы[4]:

  • комплексы с лигандами псевдопорфириновой структуры (хлорины, бензопорфирины и др.);
  • комплексы с тетрадентатными лигандами, имеющие смешанные донорные атомы (β-кетоимины, β-дикетоны, о-меркаптоанилы, β-дитионы).

Они различаются степенью ароматичности (первый тип имеет повышенную ароматичность) и устойчивостью к кислотному деметаллированию (первый тип обладает высокой устойчивостью)[4].

Концентрация никеля достигает 10−3 %. Как и ванадий, никель встречается и в порфириновых, и в непорфириновых комплексах. По своей природе эти соединения аналогичны, и с возрастанием молекулярной массы нефти доля непорфириновых веществ возрастает, а доля порфириновых комплексов падает[4].

Хром и марганец в нефти находятся в соединениях, аналогичных ванадилпорфиринам и обнаруживаются в широком диапазоне нефтяных фракций. Железо содержится в нефти в концентрациях от 10−4 до 10−3 %. Природа его соединений не изучена, предполагается, что Fe также находится в виде порфириновых комплексов[4].

Цинк обнаружен в нефти в конентрациях от 10−5 до 10−3 %, ртуть — от 10−7 до 10−5 %. В основном эти эементы концентрируются в высококипящих фракциях и CAB. Их природа не выяснена, однако предполагается, что цинк может находиться в виде комплекса с порфиринами, а ртуть — в соединении с диалкил- или диарил-радикалами[4].

На долю щелочных и щелочноземельных металлов приходится 10−3—10−4 %. Эти микроэлементы являются составной частью пластовых вод. Они представлены в виде солей нефтяных кислот, фенолятов, тиофенолятов и встречаются во всех фракциях[4].

Также в нефти в незначительных концентрациях обнаружены радиоактивные элементы: урана — от 10−8 до 10−4 %, тория — от 10−8 до 10−7 %, радия — от 10−13 до 10−12 %[4].

Неметаллы[править | править код]

Наиболее распространёнными неметаллическими компонентами в нефти являются галогены. Их содержание в нефти колеблется от 10−2 до 10−4 % (хлора — 10−2 %, йода и брома от 10−3 до 10−4 %, фтор в нефти не обнаружен). Природа этих соединений не установлена, но известно, что при перегонке хлорорганических веществ в нефти выделяется хлороводород[4].

Ещё одним элементом-неметаллом, присутствующим в нефти, является фосфор. Его содержание достигает 10−3 %[5]. О химической структуре фосфора известно, что в дистилляте присутствуют соединения, имеющие связи P—C, P—H и P—S. Также доказано, что фосфор в нефти относится именно к органическим соединениям, так как во время исследований был обнаружен только «дистиллятный» фосфор, а фосфаты (неорганические соединения фосфора) в дистиллят попасть не могут[6].

Методы определения[править | править код]

Микроэлементы нефти можно определять химическими, физико-химическими и физическими методами анализа[7].

К методам химического анализа относится титриметрия. Как правило, её применяют для определения таких элементов, как свинец, барий, кальций и цинк. Основным физико-химическим методом является фотометрия, которую используют при анализе нефтепродуктов на свинец, ванадий и мышьяк[7].

Стандартные химические и физико-химические методы определения микроэлементов

Нормативный документСпособ определенияОпределяемые элементы
ГОСТ 13210-72Титриметрический методPb
ГОСТ 13538-68Ba, Ca, Zn
ГОСТ 10364-90Фотометрический методV
UOP387-62As
ГОСТ 28828-90Pb
ISO 3830:1993
ASTM D3341-05

При определении микроэлементов в нефтепродуктах также широко применяются и физические методы анализа. Сюда относятся фотометрия пламени, атомно-абсорбционная спектрометрия и атомно-эмиссионная спектроскопия, атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой и рентгенофлуоресцентный анализ. Основным достоинством физических методов является то, что они способны определять одновременно большое количество различных микроэлементов в широком диапазоне их концентраций[7].

Нормативный документСпособ определенияОпределяемые элементы
ГОСТ 25784-83Фотометрия пламениNa, K, Ca
ISO 8691:1994Атомно-абсорбционная спектрометрияV
UOP391-9114 элементов
UOP549-81Na
UOP787-78Si
UOP800-79V, Ni, Fe
UOP848-84Ni, V, Fe, Pb, Cu, Na
UOP938-00Hg
UOP952-97Pb
ASTM D3635-01Cu
UOP962-98Атомно-абсорбционная спектрометрия
Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой
Cu
ASTM D5184-01Al, Si
UOP389-04Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой14 элементов

Стандартные физические методы определения микроэлементов (органические матрицы)

Нормативный документСпособ определенияОпределяемые элементы
ГОСТ Р 51942-2002Атомно-абсорбционная спектрометрияPb
UOP946-96As
ASTM D3237-02Pb
ASTM D3605-00(2005)Na, Ca, V, Pb
ASTM D3831-01Mn
ASTM D4628-02Ba, Ca, Mg, Zn
ASTM D5863-00a(2005) (B)Ni, V, Fe, Na
ASTM D6732-04Cu
ISO 14597:1997Рентгенофлуоресцентный анализV, Ni
UOP842-83Ni, Fe, S, V
ASTM D492705Ba, Ca, P, S, Zn
ASTM D5059-98(2003)e1Pb
ASTM D6376-99Многоэлементный анализ
ASTM D6443-04Ca, Cl, Cu, Mg, P, S, Zn
ASTM D6481-99(2004)Ca, P, S, Zn
ASTM D6595-00(2005)Атомно-эмиссионная спектроскопияМногоэлементный анализ
ASTM D6728-01
ISO 10478:1994Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмойAl, Si
ASTM D4951-028 элементов
ASTM D5185-02e222 элемента
ASTM D5600-04Многоэлементный анализ
ASTM D7040-04P
ASTM D7111-0519 элементов
ASTM D7151-05Многоэлементный анализ
Читайте также:  Какие полезные вещества содержатся в маке

Роль микроэлементов в изучении нефтеобразования[править | править код]

Изучение микроэлементов интересно с точки зрения происхождения нефти, так как содержание некоторых элементов характерно в том числе для растений и животных, что может объяснять родственность с ними нефтей[8].

Однако, согласно обзору докторов химических наук М. А. Лурье и Ф. К. Шмидта, биогенная теория генезиса нефти не полностью объясняет то, как в нефть попали металлические компоненты. Согласно органической теории, никель и ванадий появились в нефтях в процессе многоступенчатого замещения меди в её комплексах и железа и магния в гемах и производных хлорофилла. Однако хлорофилл, как и гемоглобин, в нефти никогда не был найден, а порфирины могут быть абиогенного происхождения: они входят в состав метеоритов и синтезируются в соответствующих условиях, а также присутствуют в мантийных ксенолитах[9].

Отмечается также зависимость между содержанием в нефти серы и содержанием ванадия и никеля (чем больше сернистых соединений, тем больше V- и Ni-компонентов). Это даёт основание считать, что эти компоненты являются «первичными» и попали в нефть на стадии донных илов[10].

Примечания[править | править код]

  1. Надиров Н. К., Котова А. В., Камьянов В. Ф. и др. Металлы в нефтях. — Алма-Ата: Наука, 1984. — С. 142. — 448 с.
  2. Давыдова С. Л., Тагасов В. И. Нефть и нефтепродукты в окружающей среде. — М.: Изд-во РУДН, 2004. — 163 с.
  3. Проскуряков В. А., Драбкин А. Е. Химия нефти и газа. — Санкт-Петербург: Химия, 1995. — С. 295—299. — 448 с. — ISBN 5-7245-1023-5.
  4. 1 2 3 4 5 6 7 8 9 Батуева И. Ю., Гайле A. A., Поконова Ю. В. и др. Химия нефти. — Л.: Химия, 1984. — С. 283—298. — 360 с.
  5. Камьянов В. Ф., Аксенов В. С., Титов В. И. Гетероатомные компоненты нефти. — Новосибирск: Наука, 1983. — С. 175. — 239 с.
  6. Карцев А. А. Основы геохимии нефти и газа. — М.: Недра, 1969. — С. 89—97. — 272 с.
  7. 1 2 3 Колодяжный А. В., Ковальчук Т. Н., Коровин Ю. В., Антонович В. П. Определение микроэлементного состава нефтей и нефтепродуктов. Состояние и проблемы (Обзор) // Методы и объекты химического анализа. — 2006. — Т. 1, № 2. — С. 90—104. — ISSN 1991-0290.
  8. Сыркин А. М., Мовсумзаде Э. М. Основы химии нефти и газа. — Уфа: Из-во УГНТУ, 2002. — С. 88—89. — 109 с. — ISBN 5–7831–0495–7.
  9. Лурье М. А., Шмидт Ф. К. Конденсированные превращения эндогенного метана под воздействием серы — возможный путь генезиса нефти // Российский химический журнал. — 2004. — Т. 48, № 6. — С. 135—147.
  10. Добрянский А. Ф. Химия нефти. — Л.: Гостоптехиздат, 1961. — С. 182—184. — 224 с.

Литература[править | править код]

  • Малая горная энциклопедия. В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3.
  • Плотникова И.Н. Элементный состав нефти и рассеянного органического вещества и методы их изучения. — Казань: Казанский университет, 2012. — 163 с.

Источник

В состав нефти входят многие металлы, в том числе щелочные и щелочноземельные (Li, Na, К, Ва, Са, Sr, Mg), металлы подгруппы меди (Си, Ag, Аи), подгруппы цинка (Zn, Cd, Hg), подгруппы бора (В, Al, Ga, In, T1), подгруппы ванадия (V, Nb, Та), многие металлы переменной валентности (Ni, Fe, Mo, Co, W, Сг, Mn, Sn и др.), а также типичные неметаллы (Si, Р, As, C1, Вг, I и др.).
Ничтожные концентрации этих элементов не позволяют при современном состоянии аналитической техники выделить и идентифицировать вещества, в которые они входят. Принято считать, что элементы, содержащиеся в микроколичествах в нефти,, могут находиться в ней в виде мелкодисперсных водных растворов солей, тонкодисперсных взвесей минеральных пород, а также в виде химически связанных с органическими веществами комплексных или молекулярных соединений. Последние, по данным Камьянова, подразделяют на:
1)    элементорганические соединения, т. е. содержащие связь углерод—элемент;
2)    соли металлов, замещающих протон в кислотных функциональных группах;
3)    хелаты, т. ,е. внутримолекулярные комплексы металлов;
4)    комплексы  нескольких  однородных  или  смешанных  лигандов;
5)    комплексы с гетероатомами или п-системой полиароматических асфальтеновых структур.

Наличие элементорганических соединений в нефти строго не доказано, однако есть косвенные данные о присутствии в нефтях соединений свинца, олова, мышьяка, сурьмы, ртути, германия, таллия, а также кремния, фосфора, селена, теллура и галогенов. Эти соединения встречаются как в дистиллятных фракциях, так и в тяжелых остатках.
Существование солей металлов также строго не доказано,, особенно в виде индивидуальных соединений. Наиболее веро ятным считают образование солей щелочных и щелочноземельных металлов, которые в значительных концентрациях находятся в пластовых водах. Возможен обмен катионами между минеральными солями этих металлов и нефтяными кислотами. Имеются предположения, что соли с более сложными полифункциональными кислотами смолисто-асфальтеновой части нефти могут образовывать железо, молибден, марганец и др. Однако отсутствие корреляции между кислотной функцией нефтей и концентрацией металлов не позволяет объяснить механизм образования солей.
Внутримолекулярные комплексы относительно хорошо изучены на примере порфириновых комплексов ванадия (VO2+) и никеля. Остается невыясненным, почему в нефти встречаются только ванадил- и никельпорфирины. Кроме порфириновых в нефтях обнаружены псевдопорфириновые и другие более сложные внутримолекулярные комплексы. Псевдопорфиринами; называют соединения, в которых нарушено строение порфириновой структуры либо частичным гидрированием входящих и нее циклов, либо, наоборот, конденсацией с порфирныовой структурой дополнительных ароматических колец.
Более сложные внутримолекулярные комплексы встречаются а смолах и асфальтенах, где помимо азота п комплексообразованин принимают участие атомы кислорода и серы в различном сочетании этих атомов (4N, 2N2O, 1S3O, 4S, 3S1N, 2S2N). Эти структуры гипотетичны, о возможности их существования свидетельствуют легкое кислотное деметаллирование и характерные спектры ЭПР.

Кроме ванадия и никеля такие комплексы могут образовывать медь, свинец, молибден и другие металлы.
В последнее время экстракцией диметилформамидом из смол были выделены фракции, образующие комплексы с железом, марганцем, кобальтом, медью и др. Благодаря такому расположению атомов азота в пиррольном кольце и карбонильного атома кислорода лактонной группы молекулы этих соединений обладают свойствами хелатов.
Полилигандные комплексы во многом аналогичны хелатным соединениям. Они устойчивы к кислотному гидролизу и в основном содержатся в смолистой части нефти. Однако все эти соединения имеют относительно большие и сложные по конфигурации молекулы, поэтому маловероятно образование полилигандных   комплексов   из-за   пространственного   затруднения.
Комплексы, образуемые металлами с асфальтенами, во многом подобны только что рассмотренным комплексам со смолами. Недостаточные сведения о структуре и строении асфальтенов и их многообразие не позволяют пока с уверенностью говорить о строении таких комплексов. Поэтому ограничиваются констатацией  установленных   общих  закономерностей:
концентрация большинства микроэлементов возрастает с увеличением молекулярной массы асфальтенов;
фракции асфальтепов, обогащенные микроэлементами, всегда имеют повышенное содержание азота, серы и кислорода;
фракции асфальтенов с большей степенью ароматичности богаче микроэлементами.
Предполагают, что атомы металлов создают комплексные соединения с гетероатомами асфальтенов по донорно-акцепторному типу. В этом случае комплексы могут образовываться по периферии фрагментов асфальтеновой слоисто-блочной структуры. Однако не отрицается и проникание атомов металлов между слоями этой структуры (образование особо прочных комплексов). На основании гель-хроматографических исследований считают, что Fe, Cr, Co, Cu, Zn, Hg внедрены в межплоскостные пустоты слоисто-блочной частицы асфальтенов. Интересен тот факт, что микроэлементы никогда не насыщают полностью центры асфальтенов, способные к комплексообразованию. Многочисленными исследованиями установлено, что асфальтены способны извлекать дополнительное количество металлов как из водных, так и из органических сред. Причины неполной реализации как комплексообразующих свойств смолисто-асфальтеновых компонентов нефти, так и катнонного обмена нефтяными кислотами пока не находят объяснения и нуждаются в дальнейших исследованиях.
До недавнего времени содержание и состав микроэлементов; нефти определяли почти исключительно спектральным анализом золы. Этот метод может внести значительные искажения,, особенно когда при озолении образуются летучие соединения. Например, ранее считали, что содержание бора не превышает 0,3 % на золу, однако при озолении в герметичных сосудах оказалось, что его количество значительно выше, порядка 10~3 на нефть, т. е. такое же, как многих других элементов.
Характерной особенностью нефти является то, что в ней ванадий и никель встречаются в значительно больших концентрациях, чем другие элементы. Обычно в сернистых нефтях превалирует ванадий, а в малосернистых нефтях (с большим содержанием азота)—никель. Наиболее изученными соединениями этих металлов являются порфириновые-комплексы. В зависимости от летучести порфириновых комплексов эти металлы могут быть обнаружены в дистиллятных фракциях, но, как правило, концентрируются в смолистых (никель-порфирины) и асфальтеновых (ванадилпорфирины) фракциях: нефти. Следует отметить, что в порфириновых комплексах связано от 4 до 20 % ванадия и никеля, находящихся в нефти, остальное количество обнаружено в других, более сложных комплексных соединениях, которые пока не идентифицированы.
Несмотря на малое содержание в нефти, микроэлементы значительно влияют на процессы переработки и дальнейшее использование нефтепродуктов. Болыиннспю элементов, находящихся в нефти и мпкроколичестиах, являются каталлизаторными ядами, быстро дезактивирующими промышленные катализаторы нефтепереработки. Поэтому для правильной организации технологического процесса  и выбора типа катализатора необходимо знать состав и количество микроэлементов. Большая часть их концентрируется в смолисто-асфальтеновой части нефти, поэтому при сжигании мазутов образующийся оксид ванадия сильно корродирует топливную аппаратуру и отравляет окружающую среду. Современные электростанции, работающие на сернистом мазуте, могут выбрасывать в атмосферу вместе с дымом до тысячи килограммов V2O5 в сутки. С другой стороны, золы этих ТЭЦ значительно богаче по содержанию ванадия, чем многие промышленные руды. В настоящее время уже работают установки по извлечению V2O5 из золы ТЭЦ.
Сведения о составе и количестве микроэлементов нефти необходимы и геологам для решения вопросов о происхождении нефти, для оконтуривания районов ее залегания, изучения вопросов миграции и аккумуляции нефти.

Читайте также:  В каких таблетках содержится натрий

Источник

В состав нефти и пластовых вод нефтяных месторождений входят тяжелые металлы, которые представляют собой химические элементы с атомной единицей массы более 50.

В золе нефти обнаружены Fe, Mn, Cr, Co, Ni, V, Mo, Cu, Zn, Pb, Hg, Sn и др., среди которых выделяются элементы (V, Ni, Zn и др.), попавшие в нефть из живых организмов в далеком геологическом прошлом. При этом V и Ni в некоторых видах тяжелой нефти имеют концентрации, достаточные для их промышленного извлечения. Как с ними бороться и где применять?

Тяжелые металлы нефтяного происхождения попадают в окружающую среду в процессе добычи, транспортировки и переработки нефти. Так, оценка содержания Cd, Pb, Zn и Ni на площадках буровых скважин в зависимости от концентрации в почве разлитой нефти, проведенная И.А. Лавриненко и О.В. Лавриненко в 1998 г., показала существование прямой корреляционной связи между этими показателями. По наблюдениям Т.Я. Корчиной и В.И. Корчина (2011 г.), негативное влияние нефтяных буровых установок сказывается в радиусе 2 км и более, так как содержащиеся в выхлопных газах дизельных приводов Pb, Cd и другие тяжелые металлы оседают на почву. При сжигании попутного нефтяного газа на факелах, тяжелые металлы в составе образующейся сажи также оседают и загрязняют прилегающие территории. Аналогичная неблагоприятная ситуация складывается при случайных разливах нефти и ее возгорании, что может происходить в результате механических повреждений нефтепроводов при проведении ремонтных работ или несанкционированных (криминальных) врезках на них, а также при опрокидывании железнодорожных цистерн с нефтью при маневровых работах.

Между тем тяжелые металлы представляют большую опасность для человека, в организм которого они могут поступать напрямую с вдыхаемым воздухом в условиях сжигания попутного нефтяного газа на факелах, горения разливов нефти, а также почвенной пылью и по пищевым цепям (растение-животное-человек) на территориях загрязненных нефтью. Так, исследованиями И.А. Лавриненко и О.В. Лавриненко, проведенными в 1998 г. на площадках буровых скважин (Большеземельская тундра), был показан высокий риск загрязнения тяжелыми металлами нефтяного происхождения северолюбки рыжеватой (Arctophila fulva) — кормового растения оленей и водоплавающих птиц. Миграция тяжелых металлов из загрязненной почвы в поверхностные и подземные воды также усугубляет ситуацию в связи с их поступлением в организм человека питьевой водой. Так, в работах И.Ю. Макаренковой (2007 г.) и Т.Я. Корчиной и соавторов (2010 г.) установлена прямая корреляционная связь между содержаниями в воде нефти и Hg, Zn, Pb и Cd.

Длительное воздействие тяжелых металлов на человека может проявляться в виде инициирования неоплазии, то есть образования новой ткани или опухоли в результате процессов окисления-восстановления в организме или растворения их частиц в плазме крови. Если металл способен достичь конкретного органа и внедриться в клетки так, чтобы со временем возникла достаточно высокая концентрация, то это вещество способно вызвать канцерогенный ответ. Так, например, соединения Ni индуцируют опухоли полости носа, гортани и почек, Pb увеличивают риск заболеваемости раком желудка, почек и мочевого пузыря, Cd индуцируют лейкемию, опухоли яичка и предстательной железы, шестивалентный Cr — рак полости носа, а соединения Hg — предстательной железы и почек. Однако основным органом в качестве мишени для перечисленных канцерогенных веществ, включая Zn и Fe, являются легкие, в которые они могут попасть непосредственно через вдыхаемый воздух и почвенную пыль.

Читайте также:  Какие аминокислоты содержаться в гречке

Следует отметить, что если разливы нефти на почву можно ликвидировать посредством внесения в нее биопрепаратов или биокомпостов, приводящих к практически полному разложению углеводородов посредством углеводородокисляющих микроорганизмов, то проблему очистки почвы, загрязненных тяжелыми металлами нефтяного происхождения можно решить способом фитоэкстракции. Последняя состоит в посеве и выращивании на предварительно очищенной от углеводородов нефти почве специально подобранных видов сельскохозяйственных растений для извлечения тяжелых металлов корневой системой и накопления их в надземной биомассе, в последующем утилизируемой. При этом коэффициент биологического накопления тяжелых металлов растениями, как отношение содержания металлов в растении и почве, повышают посредством внесения в последнюю хелатообразующих агентов, то есть средств, ускоряющих очистку загрязненной почвы. Способ фитоэкстракции считается простым в исполнении и экономически целесообразным по сравнению с механическими и физико-химическими способами очистки почвы. Так, механические способы связаны с удалением наиболее загрязненного поверхностного слоя почвы и его размещением на свалках для дальнейшей утилизации, перемешиванием с менее загрязненными подповерхностными слоями почвы, посредством вспашки на глубину > 40 см, или его покрытием привозной чистой почвой. Физико-химические способы осуществляют путем промывки почвы специальными реагентами для извлечения из нее тяжелых металлов или ее очистки посредством воздействия на загрязненный слой постоянного электрического тока через электроды.

Особенности очистки почв, загрязненных тяжелыми металлами

Прежде всего, необходимо подобрать виды сельскохозяйственных растений, отличающиеся высокой скоростью роста, производящие большую надземную биомассу, имеющие глубоко разрастающуюся корневую систему и высокую сопротивляемость к болезням и вредителям, быть отзывчивыми к обычной агротехнике, удобными для уборки и непривлекательными для домашних и диких животных, чтобы не вызывать случаи интоксикации насыщенной тяжелыми металлами надземной биомассой при ее поедании.

Содержание тяжелых металлов в почве загрязненного участка, предназначенного для фитоэкстракции не должно вызывать у всходов выраженных фитотоксических симптомов (обесцвечивания, пигментации и пожелтения листьев, задержки роста и др.), что характеризует их устойчивость к тяжелым металлам и способность максимально поглощать последние корневой системой и перемещать их в надземную биомассу за счет потока, создаваемого испарением воды листовой поверхностью растений.

Для увеличения коэффициента биологического накопления тяжелых металлов в растениях необходимо применять хелатообразующие агенты из числа полиамиимер, этилендиаминтетрауксусную кислоту (ЭДТА), способную образовывать прочные водорастворимые внутрикомплексные соединения со многими металлами. Реакция образования такого внутрикомплексного соединения на примере взаимодействия ионов меди с двунатриевой солью ЭДТА представлена на рисунке. Хелатообразующие агенты повышают растворимость, подвижность металлов в почве, а, следовательно, их поглощение корневой системой и накопление в надземной биомассе.

При фитоэкстракции хелатообразующие агенты в виде водных растворов их солей вносят под растения в фазу достижения ими максимальной надземной биомассы, что позволяет повысить коэффициент биологического накопления тяжелых металлов растениями, а, следовательно, сократить время очистки загрязненной почвы.

Очистку почвы, загрязненной тяжелыми металлами необходимо проводить путем кратного посева и возделывания растений вплоть до достижения в почве фоновых или предельно допустимых концентраций веществ.

При этом экономически целесообразным для фитоэкстракции считается период продолжительностью 5-10 лет.
В каждом случае фитоэкстракция завершается жатвой, сбором и утилизацией загрязненной тяжелыми металлами надземной биомассы растений, так как уборка всей корневой биомассы, первоначально насыщаемой тяжелыми металлами затруднительна.

Надземная биомасса растений путем ее предварительного высушивания, озоления и последующей специальной обработки в дальнейшем может быть использована для извлечения из нее тяжелых металлов и повторного их применения в промышленности.

В целом фитоэкстракция тяжелых металлов из загрязненных почв согласно S. Dushenkov et al. (1997 г) складывается из следующих основных стадий и процессов: выращивание определенного вида сельскохозяйственного растения с применением соответствующей агротехники; внесение в почву хелатообразующего агента для увеличения растворимости и подвижности металлов; поглощение растворенных металлов корневой системой растения; транслокация растворенных металлов в надземную биомассу растения; концентрирование металлов в растении за счет испарения влаги.

Очистка почвы, загрязненной тяжелыми металлами с помощью растения горчицы

Фитоэкстракции тяжелых металлов обычно предшествует предварительное обследование участка на уровень его загрязненности, отбор почвенных образцов для проведения специального вегетационного опыта с определенными видами сельскохозяйственного растения и хелатообразующего агента, что позволяет оценить потенциал очистки загрязненной почвы. Так, в наших исследованиях на почве, загрязненной Cu и Ni (100 и 100 мг/кг) производили посев семян горчицы (Brassica juncea). Спустя 7,5 недель, по достижении горчицей максимальной надземной биомассы, в почву вносили ЭДТА в виде водного раствора натриевой соли данного вещества в дозах от 1 до 10 ммоль/кг и через 1 неделю растения срезали, высушивали и проводили анализ в биомассе содержания Cu и Ni; те же вещества определяли в почвенных пробах, отобранных до и после процедуры фитоэкстракции. Как оказалось, с увеличением дозы ЭДТА коэффициенты биологического накопления тяжелых металлов, а, следовательно, потенциал очистки загрязненной почвы возрастали относительно контроля (без внесения ЭДТА) для Cu в 2,8-43,6 раза, для Ni — 1,8-25,3 раза. Для количественной оценки потенциала фитоэкстракции были проведены расчеты периодов достижения фоновой концентрации Cu и Ni по формуле t = ln (yo/y)/k, где yo — действительная концентрация металла в почве; y — фоновая концентрация металла в почве; k — константа скорости убыли содержания металла в почве. Было установлено, что кратность посева и выращивания горчицы с применением ЭДТА значительно сокращала время очистки почвы, загрязненной тяжелыми металлами. Так, время достижения фоновых концентраций Cu (31,6 мг/кг) и Ni (63,5 мг/кг) при внесении в почву ЭДТА в дозах от 1 до 10 ммоль/кг уменьшалось относительно контроля (без внесения ЭДТА) соответственно от 2 до 2,6 и 2,6 до 3,3 раза.

В целом двукратный посев и выращивание горчицы в течение одного вегетационного сезона может в 2 раза сократить время очистки почвы, загрязненной тяжелыми металлами во всех вариантах опыта.

Таким образом, загрязнение почв тяжелыми металлами нефтяного происхождения, как весьма опасными для человека веществами, является значимой геоэкологической проблемой, требующей безотлагательного решения в регионах, связанных с добычей, транспортировкой и переработкой нефти. Наиболее приемлемым способом очистки почв, загрязненных тяжелыми металлами является фитоэкстракция, как простой в исполнении и экономически целесообразный подход по сравнению с механическими и физико-химическими способами.

Источник:  neftegaz.ru

Источник