Какие металлы проявляют амфотерные свойства

Какие металлы проявляют амфотерные свойства thumbnail

Простые вещества сходные с металлическими элементами по структуре и ряду химических и физических параметров называют амфотерными, т.е. это те элементы, проявляющие химическую двойственность. Надо отметить, что это не сами металли, а их соли или оксиды. К, примеру, оксиды некоторых металлов могут обладать двумя свойствами, при одних условиях они могут проявлять свойства присущие кислотам, в других, они ведут себя как щелочи.

К основным амфотерным металлам относят алюминий, цинк, хром и некоторые другие.

Термин амфотерность был введен в оборот в начале XIX века. В то время химические вещества разделяли на основании их сходных свойств, проявляющиеся при химических реакциях.

понятие амфотерности

Что такое амфотерные металлы

Список металлов, которые можно отнести амфотерным, достаточно велик. Причем некоторые из них можно назвать амфотерными, а некоторые – условно.

список амфотерных элементов

Перечислим порядковые номера веществ, под которыми они расположены в Таблице Менделеева. В список входят группы с 22 по 32, с 40 по 51 и еще много других. Например, хром, железо и ряд других можно с полным основанием называть основными, к последним можно отнести и стронций с бериллием.

Кстати, самым ярким представителем амфорных металлов считают алюминий.

Именно его сплавы в течение длительного времени используют практически во всех отраслях промышленности. Из него делают элементы фюзеляжей летательных аппаратов, кузовов автомобильного транспорта, и кухонную посуду. Он стал незаменим в электротехнической промышленности и при производстве оборудования для тепловых сетей. В отличии от многих других металлов алюминий постоянно проявляет химическую активность. Оксидная пленка, которая покрывает поверхность металла, противостоит окислительным процессам. В обычных условиях, и в некоторых типах химических реакций алюминий может выступать в качестве восстановительного элемента.

Этот металл способен взаимодействовать с кислородом, если его раздробить на множество мелких частиц. Для проведения операции такого рода необходимо использование высокой температуры. Реакция сопровождается выделением большого количества тепловой энергии. При повышении температуры в 200 ºC, алюминий вступает в реакцию с серой. Все дело в том, что алюминий, не всегда, в нормальных условиях, может вступать в реакцию с водородом. Между тем, при его смешивании с другими металлами могут возникать разные сплавы.

Еще один ярко выраженный металл, относящийся к амфотерным – это железо. Этот элемент имеет номер 26 и расположен между кобальтом и марганцем. Железо, самый распространенный элемент, находящийся в земной коре. Железо можно классифицировать как простой элемент, имеющий серебристо-белый цвет и отличается ковкостью, разумеется, при воздействии высоких температур. Может быстро начинать коррозировать под воздействием высоких температур. Железо, если поместить его в чистый кислород полностью прогорает и может воспламениться на открытом воздухе.

Такой металл обладает способностью быстро переходить в стадию корродирования при воздействии высокой температуры. Помещенное в чистый кислород железо полностью перегорает. Находясь на воздухе металлическое вещество, быстро окисляется вследствие чрезмерной влажности, то есть, ржавеет. При горении в кислородной массе образуется своеобразная окалина, которая называется оксидом железа.

Свойства амфотерных металлов

Они определены самим понятием амфотерности. В типовом состоянии, то есть обычной температуре и влажности, большая часть металлов представляет собой твердые тела. Ни один металл не подлежит растворению в воде. Щелочные основания проявляются только после определенных химических реакций. В процессе прохождения реакции соли металла вступают во взаимодействие. Надо отметить что правила безопасности требуют особой осторожности при проведении этой реакции.

Соединение амфотерных веществ с оксидами или самими кислотами первые показывают реакцию, которая присуща основаниями. В тоже время если их соединять с основаниями, то будут проявляться кислотные свойства.

Нагрев амфотерных гидроксидов вынуждает их распадаться на воду и оксид. Другими словами свойства амфотерных веществ весьма широки и требуют тщательного изучения, которое можно выполнить во время химической реакции.

Свойства амфотерных элементов можно понять, сравнив их с параметрами традиционных материалов. Например, большинство металлов имеют малый потенциал ионизации и это позволяет им выступать в ходе химических процессов восстановителями.

Амфотерные — могут показать как восстановительные, так и окислительные характеристики. Однако, существуют соединения которые характеризуются отрицательным уровнем окисления.

Абсолютно все известные металлы имеют возможность образовывать гидроксиды и оксиды. 

Всем металлам свойственна возможность образования основных гидроксидов и оксидов. Кстати, металлы могут вступать в реакцию окисления только с некоторыми кислотами. Например, реакция с азотной кислотой может протекать по-разному.

Амфотерные вещества, относящиеся к простым, обладают явными различиями по структуре и особенностям. Принадлежность к определенному классу можно у некоторых веществ определить на взгляд, так, сразу видно что медь – это металл, а бром нет.

Как отличить металл от неметалла

Главное различие заключается в том, что металлы отдают электроны, которые находятся во внешнем электронном облаке. Неметаллы, активно их притягивают.

Читайте также:  Какими свойствами обладают стороны четырехугольника

Все металлы являются хорошими проводниками тепла и электричества, неметаллы, такой возможности лишены.

Основания амфотерных металлов

В нормальных условиях это вещества не растворяются в воде и их можно спокойно отнести к слабым электролитам. Такие вещества получают после проведения реакции солей металла и щелочи. Эти реакции довольно опасны для тех, кто их производит и поэтому, например, для получения гидроксида цинка в емкость с хлоридом цинка медленно и аккуратно, по капле надо вводить едкий натр.

Вместе тем, амфотерные — взаимодействуют с кислотами как основания. То есть при выполнении реакции между соляной кислотой и гидроксидом цинка, появится хлорид цинка. А при взаимодействии с основаниями, они ведут себя как кислоты.

Оцените статью:

Рейтинг: 0/5 — 0
голосов

Источник

Определение

Амфотерность (от др.-греч. амфотеро — «двойственный», «обоюдный») — способность некоторых соединений проявлять в зависимости от условий как кислотные, так и основные свойства.

Понятие амфотерность как характеристика двойственного поведения вещества было введено в 1814 г. Ж. Гей-Люссаком и Л. Тенаром.

А. Ганч в рамках общей химической теории кислотно-основных взаимодействий (1917-1927 г.г.) предложил следующее определение:

Определение

Амфотерность —  способность некоторых соединений проявлять как кислотные, так и основные свойства в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии, особенно в зависимости от свойств растворителя.

Амфотерными называют соединения, которые в зависимости от условий могут быть как донорами катионов водорода и проявлять кислотные свойства, так и их акцепторами, то есть проявлять основные свойства.

Запомнить! Амфотерными свойствами обладают оксиды и гидроксиды

  • элементов главных подгрупп — бериллий, алюминий, галлий, мышьяк, сурьма, селен и др.,

  • элементов побочных подгрупп — хром, цинк, медь (II), железо (III), молибден, вольфрам и др.

Обычно в химическом поведении гидроксидов преобладает или кислотный, или основный характер. Амфотерными свойствами обладают также некоторые органические соединения. Например, аминокислоты $(NH_2)R-COOH$, содержат в своей структуре одновременно карбоксильную группу -СООН, обуславливающую кислотные свойства, то есть являющуюся донором протона водорода, и амино-группу $NH_2$, обеспечивающую основные свойства, то есть являющуюся акцептором протонов водорода за счет неподеленной электронной пары азота.

Получение амфотерных гидроксидов

Общим способом получения амфотерных гидроксидов является осаждение разбавленной щёлочью из растворов солей соответствующего амфотерного элемента, например:

$ZnSO_4 + 2NaOH longrightarrow Zn(OH)_2 downarrow+ Na_2SO_4$

В ряде случаев при осаждении образуется не гидроксид, а гидрат оксида соответствующего элемента (например, гидраты оксидов железа(III), хрома(III), олова(II) и др.). Химические свойства таких гидратов по большей части аналогичны свойствам соответствующих гидроксидов.

Общие химические свойства амфотерных гидроксидов

Все амфотерные гидроксиды являются твёрдыми веществами. Нерастворимы в воде, в основном являются слабыми электролитами.

1. При нагревании разлагаются с образованием соответствующего амфотерного оксида, например:

$2Fe(OH)_3 xrightarrow{150-200^0 C} Fe_2O_3 + 3H_2O$

2. При взаимодействии с кислотами образуют растворимые соли, содержащие амфотерный катион, например:

$Zn(OH)_2 downarrow + 2HCl longrightarrow ZnCl_2 + 2H_2O$

3. При взаимодействии со щёлочью образуют растворимые соли с амфотерным элементом в анионе, например:

$Zn(OH)_2 downarrow + 2NaOH rightarrow Na_2[Zn(OH)_4]$

При сплавлении со щелочами образуют средние соли с амфотерным элементом в ионе кислотного остатка:

$Zn(OH)_2 downarrow + 2NaOH xrightarrow[]{t, ^circ C} Na_2ZnO_2 + 2H_2O$

Химические свойства амфотерных гидроксидов

Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями.

Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов. Например, для соединений хрома (III) характерны  следующие реакции:

$Cr(OH)_3$ (тв) + $3HCl$ (р-р) $ longrightarrow CrCl_3$ (р-р) + $3H_2O$

$Cr(OH)_3$ (тв) + NaOH (р-р) + $2H_2O longrightarrow Na[Cr(OH)_4(H_2O)_2]$ (р-р)

$Cr_2O_3$ (тв) + 6HCl (р-р) $ longrightarrow 2CrCl_3$ (р-р) + $3H_2O$

$Cr_2O_3$ (тв) + $Na_2CO_3$ (плавл)$ longrightarrow 2NaCrO_2 + CO_2$ (газ)

Традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам не являются достаточно точными. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может быть описано как реакции ионного обмена гидратированных комплексов  с  ионами гидроксония и гидроксил-анионами $H_3O^+$ и $OH^–$. Например, для $Al(OH_3)$ ионные равновесия могут быть записаны следующим образом:

$[Al(OH)_3(H_2O)_3] + 3H_3O^+ leftrightarrow [Al(H_2O)_6]^{3+} + 3H_2O$ (в кислой среде)

$[Al(OH)_3(H_2O)_3] + 3OH^- leftrightarrow [Al(OH)_6]^{3-}$ (в щелочной среде)

В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа. Например, для цинка:

  • $ZnCl_2$ и $[Zn(H_2O)_4]SO_4$ (катионные))

  • $Na_2ZnO_2$ и $Na_2]Zn(OH)_4]$ (анионные).

Источник

Главная » Металлы » Получение и сферы применения амфотерных металлов

На чтение 4 мин.

Амфотерные металлы — группа простых элементов, которые похожи с материалами из металлической группы. Сходства проявляются в свойствах, характеристиках. Сами по себе компоненты из металлической группы не проявляют подобных свойств, но их соединения часто становятся амфотерными.

Читайте также:  Трансмиссионное масло какими свойствами должно обладать

Амфотерные металлы

Какие элементы относятся к амфотерным?

Амфотерными называют — соединения, которые проявляют химическую двойственность. Они делятся на 3 группы:

  1. Оксиды — Cu2O, Cr2O, PbO2, PbO, SnO
  2. Гидроксиды — Al(OH)3, Fe(OH)3, Zn(OH)2.

К третьей группе относятся металлы — алюминий, медь, железо, цинк, бериллий, свинец и т. д. Они занимают значительную часть в периодической таблице Менделеева и находятся под порядковыми номерами — 22–32, 40–51. Другие идут по отдельности.

Представители металлов:

  1. Железо. Относится к группе амфотерных. Представляет собой простое вещество. Характерные свойства — серебристо-белый цвет, ковкость, универсальность. Если поместить железо в чистый кислород, оно полностью перегорит, а если сделать его мелкодисперсным, может произойти самовозгорание на открытом воздухе. Оксид железа образуется при его горении в среде, насыщенной чистым кислородом. Он представляет собой окалину.
  2. Алюминий. На открытом воздухе покрывается прочной оксидной пленкой, которая защищает его от образования ржавчины. Если раздробить его до мелких частиц, начинает взаимодействовать с кислородом. При контакте с кислородом выделяется большое количество тепла. Если нагреть алюминий до 200°C, он начинает взаимодействовать серой. В результате такой реакции образуется сульфид алюминия.

Амфотерные металлы — простые элементы, которые являются аналогами группы веществ металлического типа. Сходства можно увидеть в химических, физических свойствах.

Свинец (Фото: Instagram / dielektrikum)

Получение

Для получения амфотерных металлов, ученые применяют тот же процесс, что при выделении нерастворимых в воде оснований. Перед проведением работ нужно получить больше информации о взаимодействии амфотерных соединений с щелочами, поскольку с помощью щелочного раствора будет выделяться металл.

Примеры:

  1. Для получения гидроксида цинка нужно смешать раствор сульфата цинка с гидроксидом натрия.
  2. Для получения гидроксида алюминия нужно смешать раствор сульфата алюминия с раствором гидроксида калия.
  3. Для получения трехвалентных гидроксидов хрома, алюминия нужно смешать раствор карбоната с раствором на основе солей этих металлов.

Гидроксид алюминия (Фото: Instagram / ostroukh_roman)

Свойства

Свойства:

  1. При сильном нагревании соединения распадаются на составляющие. Одновременно с этим выделяется амфотерный оксид.
  2. При взаимодействии с щелочами образуются растворимые соли, с кислотами —растворимые соли с амфотерным катионом.
  3. Они могут проявлять восстановительные, окислительные свойства.
  4. Существуют определенные амфотерные металлы, которые имеют отрицательную степень окисления.

Чтобы понять химические свойства этих веществ, их нужно сравнить с обычными металлами. Они имеют множество похожих характеристик. Металлы могут образовывать оксиды, гидроксиды.

Амфотерные свойства могут проявлять металлы и неметаллы. Металлы могут отдавать электроны, которые располагаются на внешнем электронном облаке. Неметаллы притягивают их к себе.

Неметаллы не могут проводить тепло или электричество. Некоторые из них обладают такими способностями, но они незначительны. Металлы хорошо проводят электрический ток, тепло. Их используют для изготовления проводников, радиаторов.

В нормальных условия амфотерные соединения не растворяются в воде. Это твердые материалы с высокой прочностью. Выделить их основание можно после проведения химической реакции, в которой будут задействованы металлические соли, щелочь. Реакция опасна. Проводить ее нужно в специальном защитном снаряжении, медленно и аккуратно.

Большинство металлов этой группы взаимодействуют с щелочами, кислотами, легко поддаются обработке разными способами. Проявляют высокое электросопротивление, магнитные свойства.

Получение амфотерных оксидов (Фото: Instagram / lena._s1997)

Сферы применения:

  1. Изготовление деталей для сейсмических и скоростных датчиков, часовых механизмов, крутящего момента.
  2. Производство деталей для оборудования, которые будут взаимодействовать с агрессивными факторами.
  3. Армирование труб высокого давления.
  4. Кораблестроение, самолетостроение.
  5. Производство бытовых приборов, инструментов. К ним относятся столовые приборы, рулетки, бритвенные лезвия, посуда для кухни.
  6. Сборка видеозаписывающего оборудования.

С каждым годом появляется все больше химических соединений. Благодаря этому открываются новые амфотерные металлы. Их называют материалами будущего, но популярность их растет медленно. Связано это с высокой стоимостью, небольшими размерами готовых изделий.

Источник

Амфотерные металлы представлены не сложными элементами, являющимися неким аналогом группы компонентов металлического типа. Сходство прослеживается в ряде свойств физического и химического направления. Причем, за самими веществами не замечено способности к свойствам амфотерного типа, а различные соединения вполне способны к их проявлению.

Для примера можно рассмотреть гидроксиды с оксидами. У них явно прослеживается двойственная химическая природа. Она выражена в том, что, в зависимости от условий, выше названные соединения могут обладать свойствами либо щелочей, либо кислот. Понятие амфотерности появилось достаточно давно, оно знакомо науке еще с 1814 года. Термин «амфотерность» выражал способность химического вещества вести себя определенным образом при проведении кислотной (главной) реакции. Получаемые свойства зависят от того, каков тип самих присутсвующих реагентов, вида растворителя и условий, при которых проводится реакция.

Что представляют собой амфотерные металлы?

Список амфотерных металлов включает в себя множество наименований. Некоторые из них можно с уверенность назвать амфотерными, некоторые – предположительно, иные – условно. Если рассматривать вопрос масштабно, то для краткости можно назвать просто порядковые номера выше указанных металлов. Эти номера: 4,13, с 22 до 32, с 40 до 51, с 72 до 84, со 104 до 109. Но есть металлы, которые вправе назваться основными. К ним относятся хром, железо, алюминий и цинк. Дополняют основную группу стронций и бериллий. Самым распространенным из всех перечисленных на данный момент является алюминий. Именно его сплавы уже много столетий используются в самых разнообразных сферах и областях применения. Металл имеет отличную антикоррозийную стойкость, легко поддается литью и различным типам механической обработки. Кроме того, популярность алюминия дополняется такими преимуществами, как высокая теплопроводность и хорошая электропроводность.

Читайте также:  Какое свойство относится к свойствам долевой нити

Хром

Алюминий — амфотерный металл, для которого свойственно проявлять химическую активность. Стойкость данного металла определяется прочной оксидной пленкой и, в обычных условиях окружающей среды, при реакциях химического направления, алюминий выступает восстановительным элементом. Такое амфотерное вещество способно взаимодействовать с кислородом, в случае раздробления металла на мелкие частицы. Для такого взаимодействия необходимо влияние высокого температурного режима. Химическая реакция при соприкосновении с кислородной массой сопровождается огромным выделением тепловой энергии. При температуре свыше 200 градусов взаимодействие реакций при соединении с таким веществом, как сера, образовывает сульфид алюминия. Амфотерный алюминий не способен напрямую взаимодействовать с водородом, а при смешивании этого металла с другими металлическими компонентами возникают различные сплавы, содержащие соединения интерметаллического типа.

Алюминий

Железо — амфотерный металл, который является одной из побочных подгрупп группы 4 периода в системе элементов химического типа. Данный элемент выделяется как самое распространенное составляющее группы металлических веществ, в составе компонентов земной коры. Железо классифицируется как простое вещество, среди отличительных свойств которого можно выделить его ковкость, серебристо-белую цветовую гамму. Такой металл обладает способностью провоцировать возникновение повышенной химической реакции и быстро переходит в стадию корродирования при воздействии высокой температуры. Помещенное в чистый кислород железо полностью перегорает, а доведенное до мелкодисперсного состояния может самовоспламеняться на простом воздухе. Находясь на воздухе металлическое вещество быстро окисляется вследствие чрезмерной влажности, то есть, ржавеет. При горении в кислородной массе образуется своеобразная окалина, которая называется оксидом железа.

Железо

Основные свойства амфотерных металлов

Свойства амфотерных металлов — основное понятие в амфотерности. Рассмотрим, что же они из себя представляют. В стандартном состоянии каждый металлов является твердым телом. Поэтому их принято считать слабыми электролитами. Кроме того, ни один металл не может растворяться в воде. Основания получаются путем специальной реакции. В ходе этой реакции соль металла соединяется с небольшой дозой щелочи. Правила требуют проводить весь процесс аккуратно, осторожно и довольно медленно.

При соединении амфотерных веществ с кислотными оксидами или непосредственно кислотами, первые выдают реакцию, свойственную основаниям. Если же такие основания соединять с основаниями, проявляются свойства кислот. Сильное нагревание амфотерных гидроксидов приводит к их распаду. В результате распада образуется вода и соответствующий амфотерный оксид. Как видно из наведенных примеров, свойства достаточно обширны и требуют тщательного анализа, который можно провести в ходе химических реакций.

Химические свойства амфотерных металлов можно сравнить со свойствами обычных металлов, чтобы провести параллель или увидеть разницу. У всех металлов достаточно низкий потенциал ионизации, благодаря чему в химических реакциях они выступают в роли восстановителей. Стоит отметить также, что электроотрицательность неметаллов выше, чем данный показатель у металлов.

Амфотерные металлы проявляют как восстановительные, так и окислительные свойства. Но при этом у амфотерных металлов имеются соединения, характеризующиеся отрицательной степенью окисления. Всем металлам свойственна возможность образования основных гидроксидов и оксидов. Зависимо от роста порядкового номера в периодическом ранжире замечено убывание основности металла. Следует также заметить, что металлы, в основной своей части, могут окисляться только определенными кислотами. Так, взаимодействие с азотной кислотой у металлов происходит по-разному.

Алюминий

Металлы неметаллы амфотерные, которые являются простыми веществами, имеют явное различие по своему строению и индивидуальным особенностям относительно физических и химических проявлений. Тип некоторых из данных веществ легко определить визуальным способом. Например, медь является простым амфотерным металлом, а бром классифицируется как неметалл.

Чтобы не ошибиться в определении разновидности простых веществ необходимо четко знать все признаки, которые отличают металлы от неметаллов. Основным различием металлов и неметаллов выступает способность первых отдавать электроны, расположенные во внешнем энергетическом секторе. Неметаллы наоборот, притягивают электроны в зону внешнего накопителя энергетики. Все металлы имеют свойство передавать энергетический блеск, что делает их хорошими проводниками тепловой и электрической энергии, а неметаллы невозможно использовать в качестве пропускника электричества и тепла.

Источник