Какие конечные продукты обмена веществ образуются в организме

Какие конечные продукты обмена веществ образуются в организме thumbnail

Обмен веществ и энергии, или метаболизм — это совокупность всех химических реакций, происходящих в организме.

Обмен веществ и энергией представляет собой основу жизнедеятельности и принадлежит к критериям живого. 

Нет ни одного процесса в живом организме, который бы шел без участия метаболизма, так как в основе любого физиологического процесса лежат физические и химические преобразования.

В процессе метаболизма, поступившие в организм вещества, путём химических изменений превращаются в собственные вещества тканей или в конечные продукты которые выводятся из организма. При этих химических превращениях освобождается и поглощается энергия.

Все химические реакции, проходящие в организме, являются ферментативными.

В организме осуществляется нервно-гуморальная регуляция метаболизма.

В организме динамически уравновешены пластический и энергетический обмен, входящие в состав метаболизма:

  • пластический обмен = анаболизм = ассимиляция — биосинтеза органических веществ, компонентов клеток и тканей;

  • энергетический обмен = катаболизм = диссимиляция — расщепление сложных молекул и компонентов клеток.

Какие конечные продукты обмена веществ образуются в организме

Рис. Метаболизм

Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При катаболизме происходит превращение химической энергии соединений, освобождаемой при их расщеплении, в тепловую, механическую и, частично, в электрическую энергию.

ФУНКЦИИ ОБМЕНА ВЕЩЕСТВ

  • Получение энергии для функционирования организма;

  • Получение строительного материала для роста и восстановления организма: синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из полученных с пищей веществ;

  • Запасание питательных веществ на «черный день»;

  • Выведение продуктов метаболизма.

скорость обмена веществ

Скорость переноса веществ и энергии из среды в организм точно уравновешивается скоростью переноса из организма в среду. Интенсивность обмена веществ оценивают по общему расходу энергии, и она может меняться в зависимости от многих условий и в первую очередь от физической работы. Однако и в состоянии полного покоя обмен веществ и энергии не прекращается, и для обеспечения непрерывного функционирования внутренних органов, поддержания тонуса мышц и прочее расходуется некоторое количество энергии.

У молодых мужчин основной обмен веществ составляет 1300 — 1600 килокалорий (кКал) в сутки.

У женщин величина основного обмена 1100 — 1400 кКал.

Факторы, влияющие на скорость метаболизма

  • физическая нагрузка: при интенсивной физической нагрузки расход энергии (катаболизм) по сравнению со средними энергозатратами может увеличиться в 10 раз, а в очень короткие периоды (например, плавание на короткие дистанции) даже в 100 раз;

  • возраст: начиная с 5 лет величина основного обмена веществ неуклонно снижается;

  • температура: с повышением температуры тела на 1 градус величина основного обмена веществ возрастает на 13%; возрастание интенсивности обмена веществ наблюдается так же при снижении температуры окружающей среды ниже зоны комфорта. Это адаптационный процесс, связанный с необходимостью поддерживать постоянную температуру тела.

незаменимые вещества

Не все вещества, необходимые для построения собственных сложных веществ, организм человека может синтезировать сам. Существуют так называемые незаменимые вещества.

  1. Незаменимые аминокислоты. Из 20 аминокислот, входящих в состав белков, человек может образовывать только 12, остальные 8 должны поступать с пищей. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан.

  2. Полиненасыщенные жирные кислоты. Клетки человека не способны образовывать более одной двойной связи в жирных кислотах, поэтому  они должны поступать с пищей.

  3. Витамины. Эти вещества нужны в очень небольших количествах (мкг или мг). Большинство из них участвуют в образовании ферментов; при их недостатке развиваются специфические заболевания — гиповитаминозы

Источник

Образовавшиеся при распаде пищи конечные продукты метаболизма либо выводятся через покровы тела и стенки трахей (CO2), либо абсорбируются в задней кишке (H2O), либо удаляются с остатками непереваренной пищи — экскрементами (мочевина, мочевая кислота, аммиак и др.).

При гидролизе нуклеиновых кислот образуются углеводы, фосфорная кислота и обогащённые азотом пуриновые (аденин, гуанин) или пиримидиновые (цитозин, тимин) основания. В свою очередь, пуриновые основания, подвергаясь окислению и дезаминированию, дают начало мочевой кислоте и её производным: аллантоину, аллантоиновой кислоте, мочевине и аммиаку, которые выводятся из организма. Пиримидиновые основания, хотя и способны преобразовываться в мочевину и аммиак, обычно вновь вовлекаются в метаболические процессы.

При гидролизе белков образуются аминокислоты и некоторые из них — чаще всего богатые азотом аргинин и гистидин — входят в состав экскрементов (в весьма малых количествах). Обычно они используются в синтезе пуриновых оснований, образуя наряду с ними мочевину. Таким образом, конечные продукты метаболизма азотсодержащих соединений формируются при окислении пуринов или синтезируются из аминокислот (рис. 100).

Читайте также:  Какой продукт способствует росту полового органа

Рисунок 100. Конечные продукты обмена азотсодержащих соединений и их превращения у насекомых (по Gillot, 1980)

Рисунок 100. Конечные продукты обмена азотсодержащих соединений и их превращения у насекомых (по Gillot, 1980)

Большинство наземных насекомых выделяют азот в виде слаборастворимых и нетоксичных для организма мочевой кислоты, аллантоина и аллантоиновой кислоты. Они удаляются вместе с обезвоженными экскрементами; при этом возможные потери влаги сводятся к минимуму. Водорастворимые и токсичные даже в малых концентрациях мочевина и аммиак требуют для выведения очень больших количеств воды. Не случайно, что именно эти соединения являются конечными продуктами метаболизма у водных форм. Прежде чем поступить в заднюю кишку, в формирующиеся здесь экскременты, все эти метаболиты накапливаются в гемолимфе и извлекаются из неё специализированными органами выделения — мальпигиевыми сосудами.

Мальпигиевы сосуды представляют собой длинные и тонкие трубочки, впадающие в кишечник на уровне пилорического отдела (см. рис. 81). Вместе с задней кишкой они обеспечивают экскрецию азотсодержащих метаболитов и постоянство ионного баланса гемолимфы. Лишь у ногохвосток, некоторых двухвосток и тлей они не развиты.

Рисунок 81. Схема кишечного тракта насекомых (по Шванвичу, 1949)

Рисунок 81. Схема кишечного тракта насекомых (по Шванвичу, 1949):

1 — слюнные железы; 2 — глотка; 3 — пищевод; 4 — зоб; 5 — провентрикулус; 6 — кардиальный клапан; 7 — перитрофическая мембрана; 8 — мальпигиев сосуд; 9, 10 — соответственно пилорический и ректальный клапаны; 11 — анус

Стенки сосудов образованы однослойным эпителием и мышечными волокнами. Оплетённые трахеями, но лишённые нервов, они способны только к миогенным червеобразным движениям. У щетино-хвосток, уховёрток и трипсов мальпигиевы сосуды не имеют мышц и пассивно колеблются в токах гемолимфы.

В простейшем случае, например у прямокрылых, мальпигиевы сосуды однообразны по всей длине и лишь насасывают плазму с содержащимися в ней экскретами (рис. 101). Далее эта «первичная моча» проникает в полость задней кишки и подвергается здесь реабсорбции. Все метаболически ценные вещества (H2O, Cl-, Na+, K+ и др.) возвращаются в гемолимфу, а экскреты выводятся из организма. Сравнительно малая эффективность работы таких сосудов компенсируется их громадным числом (до 250 и более).

Рисунок 101. Строение и принципы работы мальпигиевых сосудов палочника (по Тыщенко, 1976)

Рисунок 101. Строение и принципы работы мальпигиевых сосудов палочника (по Тыщенко, 1976):

1 — мальпигиевы сосуды; 2 — ампула; 3 — средняя кишка; 4 — задняя кишка

Сходным образом функционируют малочисленные (4–8) мальпигиевы сосуды некоторых жуков, однако их свободные концы врастают в стенку задней кишки. Высасывая из её полости воду, они энергично проводят первичную мочу, но не способны к её реабсорбции. У многих клопов происходит дифференциация отделов и эпителия сосудов и соответственно распределение функций по их длине. В дистальном отделе эпителиальные клетки несут плотный рабдориум и содействуют образованию первичной мочи. Переходя в проксимальный отдел, клетки которого снабжены рыхлым рабдориумом, она подвергается реабсорбции, и, таким образом, этот отдел принимает на себя функции задней кишки прямокрылых (рис. 102).

Рисунок 102. Строение и принципы работы мальпигиевых сосудов клопа Rhodnius prolixus St. (по Тыщенко, 1976)

Рисунок 102. Строение и принципы работы мальпигиевых сосудов клопа Rhodnius prolixus St. (по Тыщенко, 1976):

1 — задняя кишка; 2 — средняя кишка; 3 — мальпигиевы сосуды

Ещё большей сложностью строения отличаются мальпигиевы сосуды двукрылых. Наряду с дистальным и проксимальным отделами в них выделяются промежуточный и медиальный отделы. В дистальном происходит насасывание мочевой кислоты и её солей, а также ионов Ca2+, тогда как в промежуточном и медиальном — воды. В проксимальком отделе реабсорбируются метаболически ценные продукты. У гусениц многих бабочек свойства сосудов, отмеченные у клопов и двукрылых, сочетаются с криптонефрией (рис. 103).

Рисунок 103. Строение и принципы работы мальпигиевых сосудов гусеницы бабочки Corcyra cephalonica (по Тыщенко, 1976)

Рисунок 103. Строение и принципы работы мальпигиевых сосудов гусеницы бабочки Corcyra cephalonica (по Тыщенко, 1976):

1 — средняя кишка; 2 — тонкая кишка; 3 — ампула мальпигиева сосуда; 4 — прямая кишка

Заполняющая мальпигиевы сосуды жидкость изотонична гемолимфе, но отличается от неё по набору ионов. В частности, у палочника Carausius morosus Вr. ионы K+ преобладают внутри сосуда, а ионы Na+ — снаружи. Нарушение ионного баланса проявляется в разности потенциалов и возникновении электрохимического градиента.

Ионы K+ активно транспортируются внутрь и, по-видимому, переносят молекулы воды вопреки градиенту диффузии. Несколько по-иному работают мальпигиевы сосуды кровососущего клопа Rhodnius prolixus St. В них активно проникают ионы K+ и Na+, транспортирующие воду. Экскреты, поступающие в ихдистальные отделы в виде мочекислых солей натрия и калия, оказываются в слабощелочной среде (рН 7,2), но, продвигаясь проксимально, встречают слабокислую реакцию (рН 6,6) жидкости. В этих условиях Na+ и K+ освобождаются, а мочевая кислота кристаллизуется и выпадает в осадок (см. рис. 102).

Активность экскреции у Rhodnius prolixus St. существенно повышается (в 1 000 раз) под влиянием диуретического гормона, секретируемого в грудных ганглиях. Однако его выведение в гемолимфу происходит только при возбуждении рецепторов растяжения брюшка, что наблюдается всякий раз при насасывании крови. У саранчи Schistocerca gregaria Forsk. диуретический гормон стимулирует абсорбцию в мальпигиевых сосудах и тормозит реабсорбцию в ректальных железах задней кишки. У таракана Periplaneta americana L. наряду с диуретическим выделяется антидиуретический гормон.

Кроме мальпигиевых сосудов функции экскреции конечных продуктов метаболизма азота выполняют лабиальные железы Collembola, Thysanura и некоторых крылатых насекомых. У шелкопряда Hyalophora cecropia L. лабиальные шёлкоотделительные железы гусениц преобразуются в имагинальные органы, регулирующие водообмен и выделение экскретов. Продуцируемая придаточными половыми железами самцов некоторых тараканов мочевая кислота используется для покрытия сперматофоров и таким образом выводится из организма. Вместе с тем азотсодержащие метаболиты часто вообще не выводятся наружу, а, накапливаясь в уратных клетках жирового тела, в нефроцитах и в кутикуле, исключаются из процессов обмена веществ.

Читайте также:  Какие продукты совместимы с антибиотиками

Согласованность и совершенство рассмотренных процессов метаболизма обеспечивают экономное расходование воды и энергетических субстратов, не допуская потерь сколько-нибудь ценных метаболитов. В этом отношении насекомые не уступают млекопитающим животным, несмотря на то что малые размеры тела определяют для них ряд ограничений. Однако ключевые пути метаболизма у тех и других принципиально сходны.

Источник

Какие конечные продукты обмена веществ образуются в организме

Главная
Случайная страница

Полезное:

Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать неотразимый комплимент
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника

Плазма крови: конечные продукты обмена (шлаки)

Конечные продукты обмена (шлаки), которые не могут быть использованы, подлежат удалению из организма. Важнейшие из них — это двуокись углерода , мочевина , мочевая кислота , креатинин , билирубин и аммиак . Все эти вещества, кроме углекислого газа, содержат азот и выводятся почками . При нарушении функции почек уровень азотсодержащих продуктов обмена в крови увеличивается.

Умеренно активный человек, потребляющий в день около 300 г углевод ов, 100 г жир а и 100 г пищевого белка, должен за сутки выделять около 16,5 г азот а. 95% азота удаляется через почки и остальные 5% — в составе фекалий. Главный путь экскреции азота у человека — в составе мочевины , которая синтезируется в печени, затем поступает в кровь и экскретируется почками. У людей с режимом питания, характерным для западных стран, на долю мочевины приходится 80-90% экскретируемого азота.

Почки регулируют состав и объем плазмы, а тем самым — и всей внеклеточной жидкости. Кроме того, поскольку вода и многие растворенные вещества переходят через клеточные мембраны, от функции почек зависят также состав и объем внутриклеточной жидкости. Эндогенная вода образуется до 400мл в полной дыхательной цепи.

Методы изучения обмена веществ. Исследования на целых организмах, органах, срезах тканей Гомогенаты тканей, растворимые фракции гомогенатов, субклеточные структуры Выделение метаоолитов и ферментов и определение последовательности превращения веществ. Изотопные методы.

МЕТОДЫ ИЗУЧЕНИЯ ОБМЕНА ВЕЩЕСТВ

Обмен веществ можно изучать на целом живом организме (эксперименты in vivo) или используя изолированные части организма — органы, клетки, субклеточные структуры (эксперименты in vitro, т. е. вне организма; буквально — «в стекле», в пробирке).

Исследования на целом организме

Классический пример исследований на целом организме, проведенных еще в на­чале прошлого века, составляют эксперименты Кноопа. Он изучал способ распа­да жирных кислот в организме. Для этого Кнооп скармливал собакам различные жирные кислоты с четным (I) и нечетным (II) числом атомов углерода, в которых один атом водорода в метильной группе был замещен на фенильный радикал С6Н5:

В первом случае с мочой собак всегда выводилась фенилуксусная кислота С6Н5—СН2—СООН, а во втором — бензойная кислота С6Н5—СООН. На осно­вании этих результатов Кнооп сделал вывод, что распад жирных кислот в орга­низме происходит путем последовательного отщепления двууглеродных фрагмен­тов, начиная с карбоксильного конца.

Позднее этот вывод был подтвержден другими методами.

По существу, в этих исследованиях Кнооп применил метод мечения молекул: он использовал в качестве метки фенильный радикал, не подвергающийся изме­нениям в организме. Начиная примерно с 40-х годов XX в. получило распростра­нение применение веществ, молекулы которых содержат радиоактивные или тя­желые изотопы элементов. Например, скармливая экспериментальным живот­ным разные соединения, содержащие радиоактивный углерод (14С), установили, что все атомы углерода в молекуле холестерина происходят из углеродных атомов ацетата. С помощью изо­топной метки изучают также время полужизни белков и других соединений, т. е. скорость обновления тканей.

Читайте также:  Крабовый салат какие продукты

В исследованиях на целых организмах изучают и потребности организма в пищевых веществах: если устранение из рациона какого-либо вещества приводит к нарушению роста и развития или физиологических функций организма, значит, это вещество является незаменимым пищевым фактором. Сходным образом оп­ределяются и необходимые количества пищевых веществ.

Исследования in vitro

В экспериментах in vitro объектами исследования являются изолированные части организма — отдельные органы, срезы тканей, субклеточные фракции, вплоть до очень простых биохимических систем, например таких, как система, содержащая индивидуальный фермент и его субстрат, или система из фермента, субстрата и аллостерического ингибитора. Разумеется, эти методы имеют ценность только как этап, необходимый для решения конечной цели — понимания функциониро­вания целого организма.

Изолированные органы. Если в артерию изолированного органа вводить раствор какого-либо вещества и анализировать вещества в жидкости, вытекающей из вены, то можно установить, каким превращениям подвергается это вещество в органе. Например, таким путем было найдено, что в печени за счет азота амино­кислот образуется мочевина. Сходные опыты можно проводить на органах без их выделения из организма (метод артериовенозной разницы): в этих случаях кровь для анализа отбирают с помощью канюль, вставленных в артерию и вену органа, или с помощью шприца. Таким путем, например, можно установить, что в крови, оттекающей от работающих мышц, увеличена концентрация молочной кислоты, а протекая через печень, кровь освобождается от молочной кислоты.

Срезы тканей. Срезы — это тонкие кусочки тканей, которые изготовляются с помощью микротома или просто бритвенного лезвия. Срезы инкубируют в ра­створе, содержащем питательные вещества (глюкозу или другие) и вещество, превращения которого в клетках данного типа хотят выяснить. После инкуба­ции анализируют продукты метаболизма исследуемого вещества в инкубацион­ной жидкости. Применение срезов ограничивается тем, что клеточные мембра­ны непроницаемы для многих веществ.

Гомогенаты тканей. Гомогенаты — это бесклеточные препараты. Их получа­ют путем разрушения клеточных мембран растиранием ткани с песком или в спе­циальных приборах — гомогенизаторах.

Фракционирование гомогенатов. Из гомогената можно выделить субклеточ­ные частицы, как надмолекулярные (клеточные органеллы), так и отдельные со­единения (ферменты и другие белки, нуклеиновые кислоты, метаболиты). Например, с помощью дифференциального центрифугирования можно получить фракции ядер, митохондрий, микросом (микросомы — это фрагменты эндоплазматического ретикулума). Эти органеллы различаются размерами и плот­ностью и поэтому осаждаются при разных скоростях центрифугирования. После осаждения микросом в надосадочной жидкости остаются растворимые компонен­ты клетки — растворимые белки, метаболиты. Каждую из этих фракций можно разными методами фракционировать дальше, выделяя составляющие их компо­ненты. Из выделенных компонентов можно реконструировать биохимические системы, например простую систему «фермент + субстрат», и такие сложные, как системы синтеза белков и нуклеиновых кислот.

Особенности изучения биохимии человека

В молекулярных процессах разных организмов, населяющих Землю, имеется да­леко идущее сходство. Такие фундаментальные процессы, как матричные биосин­тезы, механизмы трансформации энергии, основные пути метаболических пре­вращений веществ, примерно одинаковы у организмов — от бактерий до высших животных. Поэтому многие результаты исследований, проведенных с кишечной палочкой, оказываются применимыми и к человеку. Чем больше филогенетичес­кое родство видов, тем больше общего в их молекулярных процессах. Подавляю­щую часть знаний о биохимии человека получают таким путем: исходя из извест­ных биохимических процессов у других животных, строят гипотезу о наиболее вероятном варианте данного процесса в организме человека, а затем проверяют гипотезу прямыми исследованиями клеток и тканей человека. Такой подход по­зволяет проводить исследования на небольшом количестве биологического мате­риала, получаемого от человека. Чаще всего используют ткани, удаляемые при хирургических операциях, клетки крови (эритроциты и лейкоциты), а также клет­ки тканей человека, выращиваемые в культуре in vitro.

Изучение наследственных болезней человека, необходимое для разработки эффективных методов их лечения, одновременно дает много информации о био­химических процессах в организме человека. В частности, врожденный дефект фермента приводит к тому, что в организме накапливается его субстрат; при изу­чении таких нарушений обмена иногда открывают новые ферменты и реакции, количественно незначительные (поэтому они и не были замечены при изучении нормы), которые имеют, однако, витальное значение.

Date: 2016-05-24; view: 1914; Нарушение авторских прав

Источник