Какие из свойств относятся к газам
Тема: Три состояния вещества
I вариант
I. Как расположены молекулы в твёрдых телах и как они движутся?
Молекулы расположены на расстояниях меньших размеров самих молекул и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях друг от друга (по сравнению с размерами молекул) и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.
II. Какие из приведённых ниже свойств принадлежат газам?
Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко поддаются сжатию
III. Изменится ли объём газа, если его перекачать из сосуда вместимостью 1 литр в сосуд вместимостью 2 литра?
Увеличится в 2 раза Уменьшится в 2 раза Не изменится
IV. Молекулы расположены на больших расстояниях друг от друга (по отношению с размерами молекул), слабо взаимодействуют между собой, движутся хаотически. Какое это тело?
Газ Твёрдое тело Жидкость Такого тела нет
V. В каком состоянии может находиться сталь?
Только в твёрдом состоянии Только в жидком состоянии Только в газообразном Во всех трёх состояниях
Тема: Три состояния вещества
II вариант
I. Как расположены молекулы жидкостей и как они движутся?
Молекулы расположены на расстояниях, соизмеримых с размерами самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на больших расстояниях (по сравнению с размерами молекул) друг от друга и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.
II. Какие из приведённых свойств принадлежат газам?
Занимают весь предоставленный им объём Трудно сжимаются Имеют кристаллическое строение Легко сжимаются Не имеют собственной формы
III. В мензурке находится вода объёмом 100 см3. Её переливают в стакан вместимостью 200 см3. Изменится ли объём воды?
Увеличится Уменьшится Не изменится
IV. Молекулы плотно упакованы, сильно притягиваются друг к другу, каждая молекула колеблется около определённого положения. Какое это тело?
Газ Жидкость Твёрдое тело Таких тел нет
V. В каком состоянии может находиться вода?
Только в жидком состоянии Только в газообразном состоянии Только в твёрдом состоянии Во всех трёх состояниях
Тема: Три состояния вещества
III вариант
I. Как расположены молекулы газов и как они движутся?
Молекулы расположены на расстояниях, меньших размеров самих молекул, и перемещаются свободно относительно друг друга. Молекулы расположены на расстояниях, во много раз больше размеров самих молекул, и движутся беспорядочно. Молекулы расположены в строгом порядке и колеблются около определённых положений.
II. Какие из приведённых свойств принадлежат твёрдым телам?
Трудно изменить форму Занимают весь предоставленный им объём Сохраняют постоянную форму Легко меняют форму Трудно сжимаются
III. Изменится ли объём газа, если его перекачать из баллона вместимостью 20 литров в баллон вместимость.40 литров?
Увеличится в 2 раза Уменьшится в 2 раза Не изменится
IV. Есть ли такое вещество, у которого молекулы расположены на больших расстояниях, сильно притягиваются друг к другу и колеблются около определённых положений?
Газ Жидкость Твёрдое тело Такого вещества не существует
V. В каком состоянии может находиться ртуть?
Только в жидком Только в твёрдом Только в газообразном Во всех трёх состояниях
Тема: Три состояния вещества
IV вариант
I. Ниже указано поведение молекул в твёрдых, жидких и газообразных телах. Что является общим для жидкостей и газов?
То, что молекулы расположены на расстояниях меньших размеров самих молекул и движутся свободно относительно друг друга То, что молекулы расположены на больших расстояниях друг от друга и движутся беспорядочно То, что молекулы движутся беспорядочно друг относительно друга То, что молекулы расположены в строгом порядке и колеблются около определённых положений
II. Какие из указанных свойств принадлежат твёрдым телам?
Имеют определённый объём Занимают объём всего сосуда Принимают форму сосуда Мало сжимаются Легко сжимаются
III. В бутылке находится вода объёмом 0,5 литра. Её переливают в колбу вместимостью 1 литр. Изменится ли объём воды?
Увеличится Уменьшится Не изменится
IV. Молекулы расположены так, что расстояние между ними меньше размеров самих молекул. Они сильно притягиваются друг к другу и перемещаются с места на место. Какое это тело?
Газ Жидкость Твёрдое тело
V. В каком состоянии может находиться спирт?
Только в твёрдом состоянии Только в жидком состоянии Только в газообразном состоянии Во всех трёх состояниях
Ответы к тестам
I вариант I — 3 II — 2, 5 III — 1 IV — 1 V — 4 | II вариант I — 1 II — 1, 4, 5 III — 3 IV — 3 V — 4 | III вариант I — 2 II — 1, 3, 5 III — 1 IV — 4 V — 4 | IV вариант I — 3 II — 1, 4 III — 3 IV — 2 V — 4 |
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 октября 2019;
проверки требуют 7 правок.
Перейти к навигации
Перейти к поиску
Список газов содержит вещества, являющиеся газами при стандартных условиях (+25 °C и давлении 760 мм рт. ст.). Вещества отсортированы по температуре кипения.
Газообразные вещества[править | править код]
Название | Формула | Температура кипения, °C | Температура плавления, °C | Примечания |
---|---|---|---|---|
Гелий-4 | 4He | −268.928 | не затвердевает при обычном давлении | |
Водород | H2 | −252.879 | −259.16 | есть орто- и пара-формы с разными температурами кипения |
Неон | Ne | −246.046 | −248.59 | |
Азот | N2 | −195.795 | −210.0 | |
Угарный газ | CO | −191.5 | −205.02 | |
Фтор | F2 | −188.11 | −219.67 | |
Аргон | Ar | −185.848 | −189.34 | |
Кислород | O2 | −182.962 | −218.79 | |
Метан | CH4 | −182.5 | −164.00 | |
Криптон | Kr | −153.415 | −157.37 | |
Оксид азота(II) | NO | −151.74 | −163.6 | |
Дифторид кислорода | F2O | −144.3 | −223.8 | |
Трифторид азота | NF3 | −128.74 | −206.79 | |
Тетрафторметан[1] | CF4 | −128,0 | −183.6 | |
Моносилан[2] | SiH4 | −111.9 | −185 | |
транс-Дифтордиазин | N2F2 | −111.45 | −172 | |
Озон | O3 | −111.35 | −193 | |
Ксенон | Xe | −108.099 | −111.75 | |
цис-Дифтордиазин | N2F2 | −105.75 | ||
этилен | CH2=CH2 | −103.7 | −169.2 | |
Фторид фосфора(III) | PF3 | −101.8 | −151.5 | |
Фторид хлора(I) | ClF | −101.1 | −155.6 | |
Трифторид бора | BF3 | −99.9 | −126.8 | |
Фторсилан | SiH3F | −98.6 | ||
Трифторсилан | SiHF3 | −95 | −131 | |
Трифторметилгипофторит[3] | CF3OF | −95 | ||
Оксид азота(I) (Веселящий газ) | N2O | −88,48 | −90,86 | |
Фосфин | PH3 | −87,75 | −133,8 | |
Трифторид-оксид азота | NOF3 | −87,5 | −161 | |
Тетрафторсилан | SiF4 | −86 | −90,2 | |
1,1-Дифторэтилен | CF2=CH2 | −85,5 | −144 | |
Хлороводород | HCl | −85 | −114,17 | |
Азидотрифторметан[4] | CF3N3 | −85 | −152 | |
Фторид фосфора(V) | PF5 | −84,6 | −93,8 | |
Карбонилфторид | COF2 | −84,5 | −111,2 | |
Нитрозотрифторметан (трифторнитрозометан)[5] | CF3NO | −84 | −196,6 | |
Трифторметан[1] | CHF3 | −82,2 | −155,15 | |
Трифторхлорметан[1] | CClF3 | −81,5 | −181,0 | |
Диоксид углерода | CO2 | −78,46 | сублимирует | |
Фторметан[6] | CH3F | −78,4 | −137,8 | |
Гексафторэтан[7] | CF3CF3 | −78,1 | −100 | |
Пентафторметиламин[8] | CF3NF2 | −78 | −130 | |
Дифторсилан | SiH2F2 | −77,8 | −122 | |
Тетрафторэтилен | CF2=CF2 | −76 | −131,14 | |
Фторацетилен[9] | FCCH | −74 | −196 | |
Тетрафторгидразин | N2F4 | −74 | −164,5 | |
Фторид нитрила | NO2F | −72,4 | −166 | |
Фторэтилен[10] | CH2=CHF | −72 | −160,5 | |
Трифторхлорсилан[11] | SiClF3 | −70 | −138 | |
Трифторацетонитрил[5] | CF3CN | −68,8 | ||
Дифторхлорамин[12] | NClF2 | −67 | −195 | |
Бромоводород | HBr | −66,38 | −86,80 | |
Бис(фторокси)дифторметан[3] | CF2(OF)2 | −64 | ||
Гексафторид серы (элегаз)[13] | SF6 | −63,8 | сублимирует | |
Арсин | AsH3 | −62,5 | −166 | |
Радон | Rn | −61,7 | −71 | |
Пентафтор-O-метилгидроксиламин[14] | CF3ONF2 | −60 | экстраполяция | |
Фторид нитрозила | NOF | −59,9 | −132,5 | |
Сероводород | H2S | −59,55 | −85,5 | |
Трифторацетилфторид[15] | CF3COF | −59 | −159,5 | |
Гексафтордиметиловый эфир[15] | CF3OCF3 | −59 | ||
Бромтрифторметан[1] | CF3Br | −57,75 | −167,78 | |
Метилсилан | CH3SiH3 | −57,5 | −156,5 | |
Диоксидифторид | O2F2 | −57 | −163,5 | кипит с разложением на кислород и фтор |
Сульфурилфторид | SO2F2 | −55,4 | −135,8 | |
Фтордихлорсилан | SiHCl2F | −54,3 | ||
Транс-1,2-дифторэтилен[16] | CHF=CHF | −53,1 | ||
Трифторэтилен[10] | CF2=CHF | −53 | ||
Пентафторид мышьяка | AsF5 | −52,8 | −79,8 | |
Сульфид-трифторид фосфора | PSF3 | −52,25 | −148,8 | |
Дифторметан (фреон-32) | CH2F2 | −52 | −136 | |
Дифторкарбамоилфторид | F2NCOF | −52 | −152,2 | |
Пентафторэтилгипофторит (пентафторфтороксиэтан)[3] | C2F5OF | −52 | −136 | |
Станнан | SnH4 | −51,8 | −146 | |
Тетрафторпропин | CF3C≡CF | −50,39 | ||
Оксид-сульфид углерода (карбонилсульфид) | COS | −50,2 | −138,8 | |
Кетен | CH2=C=O | −49,7 | −151 | |
Оксид-тетрафторид серы(VI) | SOF4 | −48,5 | −99,6 | |
Пентафторэтан | CF3CHF2 | −48,5 | −99,6 | |
3,3,3-Трифторпропин | CF3C≡CH | −48,1 | −100,6 | |
Пропен | CH3CH=CH2 | −47,6 | −185,2 | |
Дифторид-хлорид фосфора(III) | PClF2 | −47,3 | −164,8 | |
Оксид-фторид-хлорид углерода | COClF | −47,2 | −148 | |
1,1,1-Трифторэтан | CH3CF3 | −47 | −111,8 | |
Трифторметилгипохлорит | CF3OCl | −47 | −164 | |
Перхлорилфторид | ClO3F | −46,75 | −147 | |
Гексафторид селена | SeF6 | −46,6 | сублимирует | |
Фторциан | FCN | −46 | −82 | |
Нитрат фтора | FNO3 | −46 | −175 | |
Нитрозопентафторэтан | C2F5NO | −45,7 | ||
Цис-1,2-дифторэтилен | FCH=CHF | −45 | ||
1,1-Дифторпропен | CH3CH=CF2 | −44 | ||
Трифторметил(фтор)силан | CF3SiH2F | −44 | ||
Тионилфторид | SOF2 | −43,8 | −110,5 | |
Тетрафторид-хлорид фосфора(V) | PF4Cl | −43,4 | −132 | |
Метилдиборан | CH3B2H5 | −43 | ||
Трифторметилдифторфосфин | CF3PF2 | −43 | ||
N,N,1,1-Тетрафторметиламин | CHF2NF2 | −43 | ||
Пропан | C3H8 | −42,25 | −187,7 | |
Трифторметилтрифторсилан | CF3SiF3 | −42 | ||
Бромтрифторсилан | SiF3Br | −41,7 | −70,5 | |
Селеноводород | H2Se | −41,25 | −65,73 | |
Дифторхлорметан | CHF2Cl | −40,7 | −175,42 | |
Тетрафторид серы | SF4 | −40,45 | −125 | |
Цис-гексафтордиазометан | CF3NNCF3 | −40 | −127 | |
Оксид-трифторид фосфора | POF3 | −39,7 | Сублимирует | |
Пентафторхлорэтан | CF3CF2Cl | −39,1 | −99 | |
Трифторметилтетрафторфосфоран | CF3PF4 | −39 | −113 | |
Гексафторид теллура | TeF6 | −38,9 | Сублимирует | |
Винилдифторборан | CH2=CHBF2 | −38,8 | −133,4 | |
(Трифторметил)силан | CF3SiH3 | −38,3 | −124 | |
Гептафторэтиламин | CF3CF2NF2 | −38,1 | −183 | |
Тетрафтораллен | CF2=C=CF2 | −38 | ||
Гексафтороксетан | C3F6O | −38 | ||
Трифторметантиол | CF3SH | −37,99 | −157,11 | |
Фторэтан | CH3CH2F | −37,7 | −143,2 | |
Бис(трифторметил)пероксид | CF3OOCF3 | −37 | ||
Пентафторпропионитрил | CF3CF2CN | −37 | ||
Гептафтордиметиламин | (CF3)2NF | −37 | ||
Октафторпропан | CF3CF2CF3 | −36,8 | −147,7 | |
Тетрафторид германия | GeF4 | −36,5 | ||
Циклопропен | C3H4 | −36 | ||
Трифторметилфторформиат | CF3C(O)F | −36 | −120 | |
Трифторметилизоцианат | CF3NCO | −36 | ||
Тетрафтор-1,2-диазетидин | C2F4N2H2 | −36 | ||
Иодоводород | HI | −35,5 | −50,76 | |
Гипофторит-пентафторид серы(VI) | SOF6 | −35,1 | −86 | |
Трифторметил дифторметиловый эфир | CF3OCHF2 | −35,0 | −157 | |
Пропадиен (Аллен) | CH2=C=CH2 | −34,8 | −136 | |
Хлор | Cl2 | −34,04 | −101,5 | |
Трифторметилфторформиат | FCOOCF3 | −34 | ||
Тетрафтордиборан | B2F4 | −34 | −56 | |
Аммиак | NH3 | −33,33 | −77,73 | |
Нитротрифторметан | CF3NO2 | −32 | ||
Дифтордихлорсилан | SiCl2F2 | −32 | −44 | |
Дифтораминодифторацетонитрил | F2NCF2CN | −32 | ||
Дифторметилен-бис-дифторамин | CF2(NF2)2 | −31,9 | −161,9 | |
Транс-гексафтордиазометан | CF3NNCF3 | −31,1 | ||
Циклопропан | C3H6 | −31 | −127,6 | |
Монохлорсилан | SiHCl3 | −30,4 | −118 | |
Гексафторпропилен | CF3CF=CF2 | −30,2 | −156,6 | |
Хлорацетилен | CH≡CCl | −30 | −126 | |
Метилтрифторсилан | CH3SiF3 | −30 | −73 | |
Дифтордихлорметан | CCl2F2 | −29,8 | −157,7 | |
Тетрафтордиазиридин | CF4N2 | −29 | ||
Селена(VI) гипофторит-пентафторид | SeF5OF | −29 | ||
Тетрафтороксетан | C2F4O | −28,6 | −117 | |
Трифторхлорэтилен | C2F3Cl | −28,3 | −158,14 | |
2,3,3,3-Тетрафторпропен | CF3CF=CH2 | −28,3 | −152,2 | |
Метилдифторфосфин | CH3PF2 | −28 | −110 | |
Гексафторацетон | CF3COCF3 | −27,4 | −125,45 | |
Трифтор(трифторметил)оксиран | CF3C2F3O | −27,4 | ||
Тиазилтрифторид | N≡SF3 | −27,1 | −72,6 | |
Трифторацетилхлорид | CF3COCl | −27 | −146 | |
3,3,3-Трифторпропен | CF3CH=CH2 | −27 | ||
Формилфторид | HCOF | −26,5 | −142,2 | |
1,1,1,2-Тетрафторэтан | CF3CH2F | −26,1 | −103,3 | |
Перфторметилвиниловый эфир | CF3OCF=CF2 | −26 | ||
Метилтрифторметиловый эфир | CF3OCH3 | −25,2 | −149,1 | |
Бис(трифторметил)нитроксил | (CF3)2NO | −25 | −70 | |
Дифторхлорметилгипофторит[3] | CClF2OF | −25 | ||
Серы(VI) пентафторид-цианид | SF5CN | −25 | −107 | |
Диметиловый эфир | CH3OCH3 | −24,8 | −141,49 | |
Оксид серы(IV) (Сернистый газ) | SO2 | −10,01 | −75,5 | |
Фтордихлорметилгипофторит[3] | CFCl2OF | 0 | ||
Гептафторид иода | IF7 | +4,8 | ||
Фосген | COCl2 | +8.3 | −118 | |
2-Фторбутан | CH3CHFCH2CH3 | +25 | −121 |
Примечания[править | править код]
- ↑ 1 2 3 4 Химическая энциклопедия. — Т.5. — М.: Советская энциклопедия, 1999, с. 279.
- ↑ Химическая энциклопедия. — Т.4. — М.: Советская энциклопедия, 1995, с. 340.
- ↑ 1 2 3 4 5 Химическая энциклопедия. — Т.5. — М.: Советская энциклопедия, 1999, с. 204.
- ↑ Гринвуд Н., Эрншо А. Химия элементов. — Т.1. — М.: БИНОМ. Лаборатория знаний, 2008, с. 393.
- ↑ 1 2 Химическая энциклопедия. — Т.5. — М.: Советская энциклопедия, 1999, с. 9.
- ↑ Химическая энциклопедия. — Т.3. — М.: Советская энциклопедия, 1992, с. 67.
- ↑ Химия фтора. — Сб.1. — М.: ГИИЛ, 1948, с. 37.
- ↑ Химия фтора. — Сб.3. — М.: ИИЛ, 1952, с. 10-11.
- ↑ Рахимов А.И. Химия и технология фторорганических соединений. — М.: Химия, 1986, с. 167.
- ↑ 1 2 Химическая энциклопедия. — Т.5. — М.: Советская энциклопедия, 1999, с. 205.
- ↑ Рысс И.Г. Химия фтора и его неорганических соединений. — М., 1956, с. 311.
- ↑ Некрасов Б.В. Основы общей химии. — Т.1. — М.: Химия, 1973, с. 402.
- ↑ Химическая энциклопедия. — Т.4. — М.: Советская энциклопедия, 1995, с. 332.
- ↑ Inorganic Chemistry. — 1965. — Vol. 4, No. 9, с. 1342-1346.
- ↑ 1 2 Химия фтора. — Сб.3. — М.: ИИЛ, 1952, с. 12-13.
- ↑ CRC Handbook of Chemistry and Physics. — 90ed. — CRC Press, 2010, с. 3-172.
Физические законы и параметры газов являются основополагающими для создания вакуумных систем. Даже при крайне низких значениях давлений, используемых в вакуумной технике, физические процессы, протекающие в газах, подчиняются общим газовым законам. Необходимость создания вакуума обычно связана с потребностью уменьшения концентрации молекул газа или частоты их столкновений с поверхностью сосуда. Газовые процессы в вакуумных системах можно, как правило, рассматривать с точки зрения законов идеального газа, а некоторые общие физические процессы вакуумных систем могут быть описаны с помощью статических и динамических свойств газов. Физические процессы, протекающие в газах при низком давлении, а также различные параметры и свойства газового потока рассмотрены ниже.
Параметры состояния газа
Если взять образец газа, то для описания его состояния достаточно знать три из четырех параметров. Этими параметрами являются давление, объем, температура и количество газа.
Давление — это сила, с которой газ воздействует на единицу площади поверхности сосуда. В СИ единицей измерения давления является паскаль, или ньютон на квадратный метр (Н/м2). В вакуумной технике также используется единица измерения миллиметр ртутного столба, или Торр: 1 мм рт. ст. = 133 Па (1 Па = 7,5 мм рт. ст.).
Объем — мера пространства, которое занимает газ; обычно он задается размерами сосуда. Единицей объема в СИ является кубический метр (м3), однако для обозначения быстроты откачки и потока газа, а также других величин широко используются литры.
Температура газа при давлении ниже 1 Торр главным образом определяется температурой поверхностей, с которыми он соприкасается. Как правило, газ находится при комнатной температуре. При выводе уравнений, описывающих состояние газов, для измерения температуры используют Кельвины (К).
Количество газа в данном объеме измеряется в молях.
Моль — число граммов газа (или любого вещества), равное его молекулярной массе. Моль содержит 6,02 х 1023 молекул. Один моль любого газа при 0 °С и давлении 760 Торр занимает объем, равный 22,4 л. Масса 1 моля газа равна его молекулярной массе в граммах.
Молярный объем является универсальной постоянной. Экспериментально установлено, что он составляет 22,414 л при 760 Торр и 0 °С. Поскольку 1 моль любого газа при температуре 0 °С и давлении 760 Торр занимает объем 22,4 л, из этого соотношения можно рассчитать молекулярную концентрацию любого объема газа, если известны его температура и давление. Например, 1 см3 воздуха при 760 Торр и 0 °С содержит 2,7 x 1019 молекул; в то время как при давлении 1 Торр и температуре 0 °С 1 см3 воздуха содержит 3,54 x 1016 молекул.
Газовые законы
Газовые законы устанавливают соотношения между физическими параметрами состояния газа (давление, объем, температура и количество газа) при постоянном значении одного из параметров. Эти законы справедливы для идеального газа в котором объем всех молекул является незначительным по сравнению с объемом газа, и энергия притяжения между молекулами является незначительной по сравнению с их средней тепловой энергией. Это означает, что данное вещество (в данном случае газ) находится в газообразном состоянии при температуре, которая достаточно высока для его конденсации. К газам, по своим свойствам близким к идеальным при комнатной температуре, относятся 02, Ne, Аг, СО, Н2 и NO.
Ниже приведены общие формулировки газовых законов.
Закон Бойля — произведение давления на объем рУ, где р — давление газа, V — его объем, является постоянной величиной для данной массы газа при постоянной температуре.
Закон Гей-Люссака — величина V/T, где Т- абсолютная температура газа, является постоянной для данной массы газа при постоянном давлении.
Закон Авогадро — равные объемы различных газов при одинаковых температуре и давлении содержат одно и то же количество молекул. Из этого закона можно получить важное соотношение между числом молей газа и давлением, которое создает газ.
Основное уравнение состояния идеального газа (уравнение Клапейрона) устанавливает зависимость между давлением, объемом и температурой для данной массы газа, т. е. теми параметрами, которые необходимы для описания состояния газа:
$$pV=MRT, (1.1)$$
где R — универсальная газовая постоянная данного газа, R = 8,31 ДжДмоль К) (62,4 Торр-л/(моль x К)); М — это число молей в объеме V
Данный закон будет справедлив и для большинства газов, которые при низких давлениях ведут себя как идеальные газы.
Закон парциальных давлений Дальтона — общее давление, создаваемое смесью газов, равняется сумме парциальных давлений, создаваемых отдельными компонентами смеси.
Парциальное давление, создаваемое одним компонентом смеси газов, — это давление, создаваемое этим компонентом, если бы он занимал весь объем.
Закон Авогадро — равные объемы идеального газа при постоянных температуре и давлении содержат одно и то же количество молекул.
Число Авогадро — число молекул в 1 моле газа или любого вещества, является универсальной постоянной и составляет 6,023 • 1023.
Число Лошмидта — число молекул в кубическом сантиметре газа при атмосферном давлении и температуре 0 °С. Это универсальная постоянная, равная 2,637 x 1019.
Для 1 моля газа при атмосферном давлении и температуре 0 °С (273,2 К), занимающего объем V = 22,414 л, R= 8.31 Дж/(моль x К) или в тепловых единицах R/J= 1,99 кал/К (У — механический эквивалент теплоты, J = 4,182 Дж кал). Следовательно, количество теплоты 1,99 кал будет повышать температуру 1 моля любого идеального газа на 1 К, или после повышения температуры 1 моля любого идеального газа на 1 К увеличение энергии газа составит 8,31 Дж.
Неидеальные газы
Примерами некоторых распространенных неидеальных газов являются аммиак, этан, бензол, диоксид углерода (углекислый газ), пары ртути, SO и S02. Газовые законы должны описывать физические процессы, протекающие в любом газе при температуре выше критической. При критической температуре, Тс, газ начинает конденсироваться. Ниже этой критической температуры имеет место давление паров над жидким конденсатом, которое называется давлением пара. Если газ конденсируется (его объем уменьшается), давление изменяться не будет, но большее количество газа будет переходить в жидкую фазу. По мере снижения температуры над жидкостью будет присутствовать меньшее количество молекул, при этом давление паров также будет снижаться.
Анонимный вопрос · 14 февраля 2018
1,2 K
Почему сжатые газы содержат в специальных баллонах?
Главный редактор издания «Популярный университет», химик по образованию… · popuni.ru
В промышленности и для проведения научных исследований очень необходимы различные газы — от обычного воздуха до аргона и ксенона. Объемы их потребления и мире огромны, поэтому для удобной транспортировки их помещают в специальные баллоны.
Дело в том, что такие газы зачастую поставляют в жидком или сжатом состоянии. Таким образом получается перевести наибольшую массу газов в наименьшем объеме, ведь, как известно, газ стремится занять все предоставленное ему пространство.
Сжижаемые газы, такие как азот и иногда кислород (который, кстати, используется в качестве окислителя в ракетном топливе) перевозят в сосудах Дьюара. Эти сосуды имеют две стенки — внешнюю и внутреннюю, — которые разделены между собой вакуумом. Это позволяет предотвратить теплообмен с окружающей средой и поддерживать постоянную температуру внутри сосуда, где содержится жидкое вещество. По сути, они представляют собой большие термосы, которые сохраняют не тепло, а холод.
Есть и другие газы, которые, как правило, поставляют в сжатом виде — это воздух, гелий и аргон. Температуры их сжижения слишком низкие и близки к абсолютному нулю, поэтому поставлять их в виде жидкостей невыгодно. Их загоняют в специальные баллоны, из которых предварительно откачивается весь воздух. Специальные насосы нагнетают в баллоны воздух под огромным давлением, чтобы его влезло как можно больше. Поэтому важно, чтобы такие агрегаты выдерживали очень высокое давление. Для этого их внешнюю часть делают толстой и тщательно следят за качеством вентилей, которые регулируют подачу газа.
Прочитать ещё 3 ответа
Железо твёрдое, потому что в нём молекулы и атомы спрессованы ближе друг у другу или в чём причина?
Researcher, Institute of Physics, University of Tartu
Нужно сначала избежать путаницы — «твердое» может значить две вещи: 1) агрегатное состояние, как твердое-жидкое-газ, и 2) механическая характеристика — твердость, как алмаз твердый, а мел — мягкий. Эти вещи в принципе связаны, но связь сложна и неоднозначная, поэтому не будем о ней :). Вероятно, Вы имеете в виду второе, механическую твердость (хотя железо отнюдь не чемпион, а вполне себе средненький материал по твердости, скорее для него имеет смысл говорить о довольно высокой прочности и пластичности).
Вы правы в том, что чем ближе элементы (молекулы, атомы, ионы) решетки друг к другу, тем прочнее будет свзь между ними. Но ключевым параметром здесь является тип химической связи, поскольку расстояние между атомами (молекулами, ионами) в решетке во многом определяется именно типом связи. Для железа, как и для других металлов, характерен металлический тип связи, когда, ну скажем, ионы металла в узлах решетки, а вокруг них общее электронное облако (это не совсем точное описание, но сгодится). Это дает 1) пластичность, поскольку связь кулоновская, а значит ненаправленная + ослабевает не так быстро при изменении расстояния. То есть, при сдвиге ионов из позиций (при механическом воздействии) связи не рвутся сразу, а имеют некий «запас прочности», 2) прочность, поскольку кулоновское взаимодействие достаточно сильное. Вот металлы они такие и есть — пластичные и прочные. Степень прочности/пластичности/твердости будет определяться во многом симметрией решетки, параметрами электронного газа и т.д.
Это можно сравнить с атомными кристаллами (типа того же алмаза) с ковалентными связями между атомами в узлах решетки (твердость может быть и повыше, поскольку если расстояние между атомами короткие, то энергия связи может быть очень высока. Зато пластичности никакой — связь направленная, любое смещение атома ее рвет). Или с молекулярными кристаллами, где связь между молекулами в узлах решетки Ван-дер-ваальсова (прочность никакая, поскольку энергия связи маленькая, зато пластичность может быть неплохая, поскольку связь ненаправленная, вопрос только в том, чтобы механическое воздействие было не слишком сильное, поскольку независимо от пластичности предел прочности очень низкий). Решетки с одним и тем же типом химсвязи всегда будут иметь много общего, хотя и могут различаться между собой достаточно сильно по количественным критериям в зависимости от других параметров.
Как изменяется внутренняя энергия вещества при переходе из твердого в газообразное?
Книги, звери и еда — это хобби навсегда.
Для перехода из твердого состояния в газообразное обычно требуется сперва расплавить вещество, затем нагреть его до температуры кипения, а затем испарить. Все три процесса требуют затрат энергии, которая идет на увеличение внутренней энергии вещества, так что при переходе вещества из твердого состояния в газообразное внутренняя энергия растет.