Какие из свойств не изменяются периодах

Какие из свойств не изменяются периодах thumbnail

По каким закономерностям изменяются свойства элементов в таблице Менделеева?

Анонимный вопрос  ·  30 октября 2018

253,7 K

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

При движении по группе главной подгруппы сверху вниз⬇️

????Радиус атома увеличтвается

????Электроотрицательность уменьшается

????Окислительные свойства ослабевают

????Восстановительные свойства усиливаются

????Неметаллические ослабевают

????Металлические усиливаются

По периоду слева направо всё наоброт????

????Радиус уменьшается

????ЭО возрастает

????Окислительные свойства усиливаются

????Восстановительные ослабевают

????Неметаллические увеличиваются

????Металлические свойства ослабевают

Педагог, музыкант, начинающий путешественник и немножко психолог

В периодах (слева направо): увеличивается заряд ядра, число электронов на внешнем уровне, уменьшается радиус атомов, в связи с этим увеличивается прочность связи электронов с ядром и электроотрицательность, что в свою очередь ведет к усилению окислительных свойств (неметаличности) и ослаблению восстановительных (металличности).

В группах (сверху вниз): увеличивается… Читать далее

Можете зайти на этот форум и найти нужный вам ответ!!Осень будем рады вас там видеть!♥️https://blog.pachca.com/post… Читать дальше

Почему в группе сверху вниз радиус атомов увеличивается, и металлические свойства усиливаются?

Химия / Медицина / Биология / Русский язык / Физика / Математика / География /…

В группах (сверху вниз) радиусы атомов увеличиваются за счёт увеличения числа электронных уровней (слоёв).

В группе металлические свойства усиливаются (сверху вниз), так как радиус, по которому движутся внешние электроны увеличивается, а следовательно притяжение между ядром и электронами становится меньше — внешние электроны легче отдаются.

Надеюсь, что помог.

Как изменяются свойства в следующих цепочках mn ti ca?

Всем, привет! Тема семьи и отношений очень близка мне, но, став мамой, нужно…

Они у вас расположены не совсем в правильноп порядке, сначла идёт Кальций, затем Титан , а уже дальше Марганец. Если брать измения в группе , то слева направо начинает уменьшаться радиус атома, увеличивается окислительная активность, ослабляются металлические свойства.

Объясните,как правильно нужно расставлять коэффициенты в уровнении реакций (химия)?

Химик, книгоголик, театрофил, сентиментальный пирожок

Прежде всего, нужно убедиться, что реакция записана правильно, что из данных реагентов получаются данные продукты, нет где-нибудь потерявшейся воды или лишнего осадка. Если речь о школьной химии, то, скорее всего, у вас на руках уже есть готовая реакция с исходниками слева и продуктами справа, в которой нужно только расставить коэффициенты, так что перейдём к следующему шагу. 

В левой и правой частях уравнения должно сойтись количество атомов одного и того же элемента (если слева пять кислородов, то и справа должно быть тоже пять). Обычно проблема с расстановкой коэффициентов возникает в окислительно-восстановительных реакциях (ОВР), и тут удобнее всего, на мой взгляд, пользоваться методом электронного баланса. Сначала нужно определить, какие элементы в процессе реакции меняют свою степень окисления и на сколько. Вот, например, простая реакция образования оксида фосфора (V):

xP + yO2 = zP2O5 

У элементного фосфора степень окисления равна нулю. У элементного кислорода — тоже. У фосфора же в оксиде степень окисления равна +5, а степень окисления кислорода в оксиде равна -2. Значит (е = электрон): 

Р(0) — 5е = Р(+5) — фосфор отдаёт 5 электронов;

О2 + 4е = 2 О(-2) — кислород принимает 4 электрона. 

Чтобы количество отданных и принятых электронов уравнялось и не было ничего лишнего/недостающего, нужно первое уравнение умножить на 4, а второе — на 5. Тогда 4 атома фосфора отдадут 20 электронов, а 5 молекул кислорода примут 20 электронов. Получаем: 

4Р + 5 О2 = zP2O5

Отсюда: 

4Р + 5 О2 = 2 Р2О5. Реакция уравнена. 

Это достаточно простой пример, который, тем не менее, неплохо иллюстрирует электронный баланс. Вот здесь можно ознакомиться с более сложными примерами. И, конечно, теорию нужно закреплять на практике: берите уравнения и расставляйте в них коэффициенты, и очень скоро всё начнёт получаться даже с объёмными реакциями со всякими страшными перманганатами и перхлоратами. Удачи! (:

Прочитать ещё 1 ответ

Как построена периодическая система химических элементов?

Интересы часто менялись, поэтому во многих областях знаний что-то знаю:)

В периодической системе отражаются сходства свойств различных элементов.

Выделяют:

  • группы (столбцы таблицы), в рамках которых элементы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках.
  • периоды (строки таблицы), в рамках которых элементы демонстрируют определённые закономерности в атомном радиусе, энергии ионизации и электроотрицательности, а также в энергии сродства к электрону.
  • блоки, элементы в которых объединены тем, на какой оболочке находится последний электрон. Блоковая структура выглядит так:

Подробнее почитать обо всех закономерностях периодической системы можно здесь

Читайте также:  Как и в каких свойствах проявляется анизотропия

Источник

Элементы главных и побочных подгрупп

Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу. 

Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:

Cl $1s^22s^22p^6 underline{3s^23p^5}$;

Mn 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$ $underline{4s^2 3d^5}$.

Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7. 

Хлор и марганец образуют высшие оксиды одного состава: $Cl_2O_7$ и $Mn_2O_7$. Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:

Cl$_2$O$_7$ + Н$_2$О → 2HClO$_4$    хлорная кислота,

Mn$_2$O$_7$  + Н$_2$О → 2HMnO$_4$    марганцевая кислота.

Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями. 

И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO$_4$ и KMnO$_4$. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.

Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.

Атомный радиус

Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.

Какие из свойств не изменяются периодах

Электроотрицательность

Определение

Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).

Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.

Какие из свойств не изменяются периодах

Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. 

Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах. 

Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.

Какие из свойств не изменяются периодах

Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.

Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.

В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства. 

Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.

Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металлоксид металла ($Me_xO_y$) — гидроксид (основание $Me^{+n}(OH)_n$. В сложных веществах проявление металлических свойств характеризуется понятием основность,  и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются. 

Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.

Читайте также:  Поясни какое свойство живых организмов

Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов,  и приобретают отрицательный заряд.

Легче всего  принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.

Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:

3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.

Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500$^o$С.  С неметаллом азотом алюминий вступает в реакцию уже при 1000$^o$С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.

Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.

Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметаллоксид неметалла ($HMe_xO_y$) — гидроксид неметалла (кислородсодержащая кислота $H_n(HMeO)^{n-}$). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность,  и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются. 

Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают. 

Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток. 

Энергия ионизации

Определение

Энергия ионизации — это наименьшая энергия, которая должна быть  затрачена на отрыв электрона от нейтрального атома. 

Какие из свойств не изменяются периодах

Ионный радиус

Какие из свойств не изменяются периодах

Диагональная периодичность

В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.

Какие из свойств не изменяются периодах

Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.

Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:

Какие из свойств не изменяются периодах

Какие из свойств не изменяются периодах

Сравнение строения и свойств элементов VIIА и VIIB групп

Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов  и неметаллов —  представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и  VIIB -групп и сравним их между собой.

Какие из свойств не изменяются периодах

К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.

Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле $1s^22s^22p^63s^23p^5$ или $[Ne]3s^23p^5$.  Это означает, что валентными являются 7 внешних электронов — 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.

Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:

Читайте также:  Какие виды шиповника полезные свойства

Какие из свойств не изменяются периодах Какие из свойств не изменяются периодах

В этом случае «распаренными» получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления  +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:

HCL- хлороводородная, соли — хлориды

HCLO – хлорноватистая (кислотный оксид $Cl_2O$, соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:

$2HClO +  H_2S longrightarrow S + Cl_2 + H_2O$

$HCLO_2$ – хлористая (кислотный оксид $Cl_2O_3$, соли — хлориты), неустойчивая; 

$HClO_3$ – хлорноватая (кислотный оксид — $Cl_2O_5$, соли – хлораты, $KClO_3$ – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:

$HClO_3 + S + H_2O  longrightarrow H_2SO_4 +  HCl$

$HClO_4$– хлорная (кислотный оксид — $Cl_2O_7$, соли  —  перхлораты

Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:

с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства

 В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.

Рассмотрим теперь особенности строения и свойств элементов  IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.

Какие из свойств не изменяются периодах

Натрий находится с хлором в одном периоде, имеет электронную конфигурацию $1s^22s^22p^63s^1$ или $[Ne]3s^1$. то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:

Какие из свойств не изменяются периодах

Теперь рассмотрим и сравним свойства элементов побочных подгрупп  IB и  VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего  (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого «перескока» электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня  и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).  

Какие из свойств не изменяются периодах

Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют «благородными металлами». Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет «царская водка» — смесь концентрированной соляной и азотной кислот.

Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc — технеций, Re — рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой $1s^22s^22p^63s^23p^63d^54s^2$ или $[Ar]3d^54s^2$. Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией $d^5$ и $d^3$. 

Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, $Mn_2O_3$, $MnO_2$, $MnO_3$ (не выделен в свободном состоянии) и марганцевый ангидрид $Mn_2O_7$. Оксиды низших валентностей (II, III) носят основной характер, высших — кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:

Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:

  • $MnO_4^{3−}$  — гипоманганаты, 

  • $MnO_4^{2−}$ — манганаты,

  • $MnO_4^−$ — перманганаты 

Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:

Степени окисления марганца:

В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

Источник