Какие из свойств генетического кода указаны правильно

Какие из свойств генетического кода указаны правильно thumbnail

Веществами,  ответственными за хранение и передачу генетической информации, являются нуклеиновые кислоты (ДНК и РНК).

Все функции клеток и организма в целом определяются набором белков, обеспечивающих

  • образование клеточных структур,

  • синтез всех других веществ (углеводов, жиров, нуклеиновых кислот),

  • протекание процессов жизнедеятельности.

В геноме содержится информация о последовательности аминокислот во всех белках организма. Именно эта информация и называется генетической информацией

За счёт регуляции генов регулируется время синтеза белков, их количество, место нахождения в клетке или в организме в целом. Во многом за это отвечают регуляторные участки ДНК, усиливающие и ослабляющие экспрессию генов в ответ на те или иные сигналы.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов (А, Т, Г, Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Соотношения, на основе которых осуществляется такой перевод, называются генетическим кодом.

Первым проблему генетического кода теоретически рассмотрел выдающийся физик Георгий Гамов. Генетический код обладает определённым набором свойств, которые будут рассмотрены ниже. 

почему необходим генетический код?

Ранее мы говорили о том, что все реакции в живых организмах осуществляются под действием ферментов, и именно способность ферментов сопрягать реакции даёт возможность клеткам синтезировать биополимеры за счёт энергии гидролиза АТФ. В случае простых линейных гомополимеров, то есть полимеров, состоящих из одинаковых единиц, для такого синтеза достаточно одного фермента.  Для синтеза полимера, состоящего из двух чередующихся мономеров, необходимо два фермента, трёх — три и т. д. Если полимер разветвлён, необходимы дополнительные ферменты, образующие связи в точках ветвления. Таким образом, при синтезе некоторых сложных полимеров участвует более десяти ферментов, каждый из которых отвечает за присоединение определённого мономера в определённом месте и определённой связью.

Однако при синтезе нерегулярных гетерополимеров (то есть полимеров без повторяющихся участков) с уникальной структурой, таких как белки и нуклеиновые кислоты, такой подход в принципе невозможен. Фермент может присоединить определённую аминокислоту, но не может определить, в каком месте полипептидной цепи её надо поставить. В этом и состоит основная проблема биосинтеза белков, решение которой невозможно при использовании обычного ферментативного аппарата. Необходим дополнительный механизм, использующий некий источник информации о порядке аминокислот в цепи.

Для решения этой проблемы Кольцов предложил матричный механизм синтеза белков. Он считал, что молекула белка является основой, матрицей для синтеза таких же молекул, т. е. против каждого аминокислотного остатка в полипептидной цепи ставится такая же аминокислота в синтезируемой новой молекуле. Эта гипотеза отражала уровень знания той эпохи, когда все функции живого связывались с определёнными белками. 

Однако позднее выяснилось, что веществом, хранящим генетическую информацию, являются нуклеиновые кислоты. 

СВОЙСТВА ГЕНЕТИЧЕСКОГО КОДА

КОЛЛИНЕАРНОСТЬ (линейность)

Сначала мы рассмотрим, как в  последовательности нуклеотидов записана последовательность аминокислот в белках. Логично предположить, что, поскольку последовательности нуклеотидов и аминокислот линейны, то между ними существует линейное соответствие, т. е. расположенным рядом нуклеотидам в ДНК соответствуют расположенные рядом аминокислоты в полипептиде. На это же указывает линейный характер генетических карт. Доказательством такого линейного соответствия, или коллинеарности, является совпадение линейного расположения мутаций на генетической карте и аминокислотных замен в белках мутантных организмов. 

триплетность

При рассмотрении свойств кода реже всего встает вопрос о кодовом числе. Необходимо закодировать 20 аминокислот четырьмя нуклеотидами. Очевидно, что 1 нуклеотид не может кодировать 1 аминокислоту, т. к. тогда было бы возможно закодировать только 4 аминокислоты. Для того чтобы закодировать 20 аминокислот, нужны комбинации из нескольких нуклеотидов. Если взять комбинации из двух нуклеотидов, то мы получим 16 различных комбинаций ($4^2$ = 16). Этого недостаточно. Комбинаций из трёх нуклеотидов будет уже 64 ($4 ^3$ = 64), т. е. даже больше, чем нужно. Понятно, что комбинации из большего числа нуклеотидов тоже могли бы быть  использованы, но из соображений простоты и экономии они маловероятны, т. е. код триплетный.

вырожденность и однозначность

В случае 64 комбинаций возникает вопрос, все ли комбинации кодируют аминокислоты или каждой аминокислоте соответствует только один триплет нуклеотидов. Во втором случае большая часть триплетов была бы бессмысленной, а замены нуклеотидов в результате мутаций в двух третях случаев приводили бы к потере белка. Это не соответствовует наблюдаемым частотам потери белка при мутациях, что указывает на использование всех или почти всех триплетов. В дальнейшем было выяснено, что существуют три триплета, не кодирующие аминокислот. Они служат для того, чтобы обозначать конец полипептидной цепочки. Их называют стоп-кодонами. 61 триплет кодирует различные аминокислоты, т. е. одна аминокислота может кодироваться несколькими триплетами. Это свойство генетического кода называется вырожденностью. Вырожденность имеет место только в направлении от аминокислот к нуклеотидам, в обратном направлении код однозначен, т.е. каждый триплет кодирует одну определённую аминокислоту. 

знаки препинания

Важный вопрос, решить который теоретически оказалось невозможным, каким образом триплеты, кодирующие соседние аминокислоты, отделяются друг от друга, т. е. есть ли в генетическом тексте знаки препинания.

Отсутствие запятых — эксперименты

Остроумные эксперименты Крика и Бреннера позволили узнать, есть ли «запятые» в генетических текстах. В ходе этих экспериментов учёные при помощи мутагенных веществ (акридиновых красителей) вызывали возникновение определённого типа мутаций — выпадения или вставки 1 нуклеотида. Оказалось, что выпадение или вставка 1 или 2 нуклеотидов всегда вызывает поломку кодируемого белка, а вот выпадение или вставка 3 нуклеотидов (или числа, кратного 3) практически не сказывается на функции кодируемого белка.  

Какие из свойств генетического кода указаны правильно

Представим себе, что у нас имеется генетический текст, построенный из повторяющейся тройки нуклеотидов АВС (рис. 1, а). В случае, если знаков препинания нет, вставка одного дополнительного нуклеотида приведёт к полному искажению текста (рис. 1, а). Были получены мутации бактериофага, расположенные на генетической карте близко друг от друга. При скрещивании двух фагов, несущих такие мутации, возникал гибрид, несущий две однобуквенные вставки (рис. 1, б). Понятно, что смысл текста терялся и в этом случае. Если же ввести ещё одну однобуквенную вставку, то после короткого неправильного участка смысл восстановится и есть шанс получить функционирующий белок (рис. 1, в). Это верно для триплетного кода при отсутствии знаков препинания. Если кодовое число другое, то и количество необходимых для восстановления смысла вставок будет другим. Если же в коде есть знаки препинания, то вставка нарушит чтение только одного триплета, а весь остальной белок будет синтезироваться правильно и сохранит активность. Эксперименты показали, что однобуквенные вставки всегда приводят к исчезновению белка, а восстановление функции происходит, когда число вставок кратно 3. Таким образом была доказана триплетность генетического кода и отсутствие внутренних знаков препинания.

Читайте также:  Какие свойства имеет янтарь

неперекрываемость

Гамов предположил, что код перекрывающийся, т. е. первый, второй и третий нуклеотиды кодируют первую аминокислоту, второй, третий и четвёртый — вторую аминокислоту, третий, четвёртый и пятый — третью и т. д. Такая гипотеза создавала видимость решения пространственных затруднений, но создавала другую проблему. При таком кодировании за данной аминокислотой не могла идти любая другая, так как в кодирующем её триплете два первых нуклеотида уже были определены, и число возможных триплетов снижалось до четырёх. Анализ последовательностей аминокислот в белках показал, что встречаются все возможные пары соседних аминокислот, т. е. код должен быть неперекрывающимся.

универсальность

Еще одним свойством генетического кода, постулированным из теоретических соображений, является его универсальность. Предполагалось, что все виды живых организмов произошли в результате эволюции от одного общего предка, поэтому они имеют одинаковый генетический код. Это положение подтвердилось дальнейшими исследованиями. Оно имеет большое практическое значение, т. к. благодаря универсальности генетического кода мы можем заставить гены одного организма работать в другом организме и производить функционально активные белки. Это позволяет с помощью методов генетической инженерии получать в бактериях белки человека, нужные для медицинских целей, например, инсулин или гормон роста. Однако универсальность генетического кода оказалась не абсолютной. Известно несколько генетических систем, в которых генетический код немного отличается от универсального. Прежде всего это митохондрии. Кроме того, отклонения от универсального генетического кода найдены у некоторых инфузорий и паразитических бактерий. Однако во всех этих случаях отклонения незначительны и, очевидно, возникли вторично на основе универсального кода. 

расшифровка кода

Когда основные свойства генетического кода были изучены, начались работы по его расшифровке и были определены значения всех триплетов (см. рис.). Триплет, кодирующий определённую аминокислоту, получил название кодона. Как правило, указываются кодоны в мРНК, иногда — в смысловой цепи ДНК (те же кодоны, но с заменой У на Т). Для некоторых аминокислот, например, метионина, существует только один кодон. Другие имеют по два кодона (фенилаланин, тирозин). Есть аминокислоты, которые кодируются тремя, четырьмя и даже шестью кодонами. Кодоны одной аминокислоты похожи друг на друга и, как правило, отличаются одним последним нуклеотидом. Это делает генетический код более устойчивым, так как замена последнего нуклеотида в кодоне при мутациях не ведёт к замене аминокислоты в белке. Знание генетического кода позволяет нам, зная последовательность нуклеотидов в гене, выводить последовательность аминокислот в белке, что широко используется в современных исследованиях.

Какие из свойств генетического кода указаны правильно

Источник

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс  начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 лет. А для образования в организме цепочки из 20 аминокислот требуется не более  одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются  различиями в  генотипах—наборах генов организма;  у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках  — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Читайте также:  Какими свойствами может обладать сера

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности  (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64                              четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот                                   

поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами:  триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК,   не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.  

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином «матрица» в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит «сшивание» мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти «сборка» только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

 К реакциям матричного синтеза относят:

1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Читайте также:  Какое свойство грунта является наиболее важным при их разработке

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК А Т Г Г Г Ц ТАТ

транскрибируемая цепь ДНК Т А Ц Ц Ц Г А Т А

транскрипция ДНК ß ß ß

кодоны мРНК А У Г Г Г Ц У А У

трансляция мРНК ß ß ß

антикодоны тРНК У А Ц Ц Ц Г А У А

аминокислоты белка метионин глицин тирозин

Таким образом, биосинтез белка  – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника –  матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так  до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом — полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот  транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка — рибосомам. Лишь после этого наступает следующий этап — трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы — это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка  зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Источник