Какие из соединений проявляют ароматические свойства

Какие из соединений проявляют ароматические свойства thumbnail

Запрос «Арены» перенаправляется сюда; см. также другие значения.

Бензол — одно из наиболее распространённых ароматических соединений

Ароматические соединения (арены) — циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения. Среди небензоидных ароматических соединений хорошо известны азулен, аннулены, гетарены (пиридин, пиррол, фуран, тиофен), ферроцен. Известны и неорганические ароматические соединения, например боразол («неорганический бензол»).

В структуре молекул многих соединений можно выделить несколько ароматических систем, которые могут быть по отношению друг к другу изолированными либо конденсированными. В качестве примеров бензоидных соединений с изолированными бензольными ядрами можно назвать такие соединения как дифенилметан и полистирол, с удалёнными друг от друга бензольными ядрами, а также дифенил и терфенилы с непосредственно связанными ядрами. Примерами бензоидных соединений с конденсированными (аннелированными) бензольными ядрами являются такие соединения как нафталин, пирен и прочие ПАУ. В структуре дифенилена бензольные ядра непосредственно связаны друг с другом, но, в отличие от дифенила, у дифенилена бензольные ядра не являются изолированными. Если принять во внимание тот факт, что в одной молекуле может различным образом сочетаться различное число различных ароматических и неароматических групп, то становится очевидно, что число возможных ароматических соединений и их разнообразие практически не ограничены.

Широко распространены и имеют большое практическое значение бензоидные ароматические углеводороды (арены). Помимо бензольных колец арены часто содержат другие разнообразные углеводородные группы (алифатические, нафтеновые, полициклические). Основным источником получения ароматических углеводородов служат каменноугольная смола, нефть и нефтепродукты. Большое значение имеют синтетические методы получения. Наиболее важными аренами являются: бензол С6Н6 и его гомологи (толуол С6Н5СНз, ксилолы С6Н4(СНз)2, дурол, мезитилен, этилбензол), кумол, нафталин C10H8, антрацен С14Н10 и их производные.
Ароматические углеводороды — исходное сырьё для промышленного получения кетонов, альдегидов и кислот ароматического ряда, а также многих других веществ.

Критерии ароматичности[править | править код]

Единой характеристики, позволяющей надёжно классифицировать соединение как ароматическое или неароматическое, не существует. Основными характеристиками ароматических соединений являются:

  • склонность к реакциям замещения, а не присоединения (определяется легче всего, исторически первый признак, пример — бензол, в отличие от этилена не обесцвечивает бромную воду)
  • выигрыш по энергии, в сравнении с системой несопряженных двойных связей. Также называется Энергией Резонанса (усовершенствованный метод — Энергией Резонанса Дьюара) (выигрыш настолько велик, что молекула претерпевает значительные преобразования для достижения ароматичного состояния, например циклогексадиен легко дегидрируется до бензола, двух и трёхатомные фенолы существуют преимущественно в форме фенолов (енолов), а не кетонов и т. д.).
  • наличие кольцевого магнитного тока (наблюдение требует сложной аппаратуры), этот ток обеспечивает смещение хим–сдвигов протонов, связанных с ароматическим кольцом в слабое поле (7—8 м. д. для бензольного кольца), а протонов расположенных над/под плоскостью ароматической системы — в сильное поле (спектр ЯМР).
  • наличие самой плоскости (минимально искаженной), в которой лежат все (либо не все — гомоароматичность) атомы образующие ароматическую систему. При этом кольца пи–электронов, образующиеся при сопряжении двойных связей (либо электронов входящих в кольцо гетероатомов) лежат над и под плоскостью ароматической системы.
  • практически всегда соблюдается Правило Хюккеля: ароматичной может быть лишь система, содержащая (в кольце) 4n+2 электронов (где n = 0, 1, 2, …). Система, содержащая 4n электронов является антиароматичной (в упрощённом понимании это обозначает избыток энергии в молекуле, неравенство длин связей, низкая стабильность — склонность к реакциям присоединения). В то же время, в случае пери–сочленения (есть атом(ы), принадлежащий(е) одновременно 3 циклам, то есть возле него нет атомов водорода или заместителей), общее число пи-электронов не соответствует правилу Хюккеля (фенален, пирен, коронен). Также предсказывается, что если удастся синтезировать молекулы в форме ленты Мёбиуса (кольцо достаточно большого размера, дабы закручивание в каждой паре атомных орбиталей было мало), то для таких молекул система из 4n электронов будет ароматичной, а из 4n+2 электронов — антиароматичной.

Получение[править | править код]

  • Каталитическая дегидроциклизация алканов, то есть отщепление водорода с одновременной циклизацией. Реакция осуществляется при повышенной температуре с использованием катализатора, например оксида хрома.
  • Каталитическое дегидрирование циклогексана и его производных. В качестве катализатора используется палладиевая чернь или платина при 300 °C. (Н. Д. Зелинский)
  • Циклическая тримеризация ацетилена и его гомологов над активированным углем при 600 °C. (Н. Д. Зелинский)
  • Алкилирование бензола галогенопроизводными или олефинами. (Реакция Фриделя — Крафтса)

Первые в мире заводы для получения ароматических углеводородов из нефти — один возле Ярославля, другой возле Баку, были построены в 1880—1881 гг по проекту Александра Летнего.[1]

Читайте также:  Какие из приведенных свойств принадлежат газам

Классификация[править | править код]

В общих чертах ароматические соединения можно классифицировать следующим образом:

Системы с 2 π-электронами.

Представлены производными катиона циклопропенилия и дикатион циклобутадиена. Например перхлорат циклопропенилия.

Системы с 6 π-электронами.

  1. Бензол и его гомологи
  2. Циклопентадиенил-анион
  3. Циклогептатриенил-катион
  4. Дианион циклобутадиена, дикатион циклооктатетраена
  5. Пяти- и шестичленные циклы, содержащие один или несколько гетероатомов, обычно азота, кислорода или серы. Наиболее известны среди них пиррол, фуран, тиофен, пиридин.

Системы с 10 π-электронами.

  1. Нафталин. Широко встречается в природе, конденсированные бензольные кольца.
  2. Азулен. Изомер нафталина, содержит в себе 5- и 7-членное кольца. Встречается в эфирных маслах.
  3. Дианион циклооктатетраена, анион циклононатетраена, азонин, 1,6-замещенные-[10]-аннулены (мостиковые).
  4. Индол, хинолин, изохинолин, хиназолин, хиноксалин, другие системы, основанные на бензольном кольце, конденсированном с другим кольцом, в котором находится гетероатом. Широко распространены в природе.
  5. Хинолизидин, пирролизидин, пурин, птеридин (их аналоги) — бициклические производные пиррола, пиридина и т. д. Содержат атомы азота (реже — кислорода в точке сопряжения либо несколько гетероатомов, в обоих кольцах). Широко распространены в природе.

Системы с 14 π-электронами.

  1. Антрацен, фенантрен, в определённом смысле — фенален — конденсированные бензольные кольца. Соединения такого типа называют полиценами (следующий — тетрацен).
  2. [14]-аннулен. Как сам по себе, так и его мостиковые вариации (транс-15,16-диметилгидропирен, син-1,6:8,13-бисоксидо[14]аннулен). Также ароматичен дегидро[14]аннулен.

Системы с более чем 14 π-электронами.

  1. 18-Аннулен, кекулен[2].
  2. Коронен — ароматически полициклический углеводород, содержащий 24 π-электрона, что означает по правилу Хюккеля его антиароматичность. Однако π-электронная система коронена состоит из двух концентрических колец, содержащих 18 (внешнее) и 6 (внутреннее) электронов[3].

В 2019 году группой химиков Оксфордского университета был синтезирован циклический гексамер порфирина с 162 π-электронами, молекула этого соединения имеет диаметр 5 нм[4].

Гомоароматичные системы

Один из атомов кольца, которое не может расположиться в плоскости, резко выведен из этой плоскости, сохраняет sp³-гибридизацию и не участвует в сопряжении. Так, при растворении циклооктатетраена в серной кислоте образуется гомотропилиевый ион. Аналогичную структуру имеет трисгомоциклопропенильный катион.

Сидноны

И прочие мезоионные соединения. Принадлежность сиднонов к ароматическим соединениям так и не была однозначно принята всеми учёными (предлагал В. Бекер). Впрочем единственный протон, связанный с углеродом, вступает во многие реакции, характерные для аренов (нитрование, сульфирование, хлорирование, меркурирование и т. д.), а сам сиднон содержит циклическую систему пи-орбиталей.

Спироароматические системы

Представитель — [4,2]спирарен. Подчиняется правилу Хюккеля.

Свойства[править | править код]

Как правило, ароматические соединения — твёрдые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра. Для ароматических соединений характерны реакции замещения, как электрофильного (галогенирование, нитрование, сульфирование, алкилирование, ацилирование, др.), так и нуклеофильного (по различным механизмам). Возможны реакции присоединения, окисления (для моноядерных аренов — в весьма жёстких условиях и/или с катализаторами).

Примечания[править | править код]

  1. В. Е. Пархоменко. Технология переработки нефти и газа. — Москва; Ленинград: Государственное Научно-Техническое Издательство Нефтяной И Горно-Топливной Литературы, 1953. — С. 193. — 460 с.
  2. ↑ Дж. Марч. Органическая Химия. Реакции, механизмы и структура. 1 том. с 88
  3. ↑ Терней А. Л. Современная органическая химия. т.1. с. 578.
  4. ↑ Michel Rickhaus, Michael Jirasek, Lara Tejerina, Henrik Gotfredsen,Martin D. Peeks,Renée Haver, Hua-Wei Jiang, Timothy D. W. Claridge, Harry L. Anderson. Global aromaticity at the nanoscale, Nature Chemistry, volume 12, pages 236–241 (2020).

Литература[править | править код]

  • Дж. Марч. Органическая Химия. Реакции, механизмы и структура. 1 том.
  • Керри. Сандберг. Органическая химия. Механизмы реакций. 1 том.
  • Химическая Энциклопедия в 5 томах. ред. И. Л. Кнунянц. 1 том.

Источник

Ароматичность

Среди соединений, содержащих замкнутую сопряженную систему $pi$-электронов, наибольший интерес представляют ароматические соединения, обладающие совокупностью отличительных свойств. Так, несмотря на высокую степень ненасыщенности, ароматические соединения:

  • устойчивы к действию окислителей и температуры

  • более склонны вступать в реакции замещения, а не присоединения

  • обладают повышенной термодинамической стабильностью по сравнению с сопряженными системами с открытой цепью

Известна также тенденция некоторых циклических соединений превращаться при благоприятных условиях в ароматические.

К ароматическим соединениям прежде всего относятся бензол и вещества, сходные с ним по строению и химическому поведению. Но ароматические соединения могут иметь и существенно отличающуюся от бензола структуру. Замкнутая цепь может состоять не только из атомов углерода, но и включать гетероатомы, аткие как S, N, O и т.д.

Критерии ароматичности

Соединение ароматично, если оно имеет:

  • плоский циклический $sigma$ скелет

  • сопряженную замкнутую $pi$-электронную систему, охватывающую все атомы цикла

  • число $pi$-электронов, образующих сопряженную систему соответствует формуле            $4n +2$, где n = 0,1, 2, 3, 4… и т.д. Эта формула известна как правило Хюккеля.

Критерии ароматичности позволяют отличать сопряженные ароматические системы от всех других.

Читайте также:  Какими свойствами обладает скалярное произведение векторов

Например, бензол — плоская циклическая молекула с замкнутой системой сопряжения, в которой участвует секстет $pi$-электронов, что соответствует правилу Хюккеля при n=1 ($4cdot n + 2 = 4 cdot 1 +2 = 6$).

Рисунок 1

Циклобутадиен — циклическая плоская сопряженная система, однако число $pi$-электронов, участвующий в сопряжении равно 4 (четырем), что не соответствует правилу Хюккеля (если n = 0, число электроно = 2; если n = 1, число электронов равно = 6)

Какие из соединений проявляют ароматические свойства

Рисунок 2

 Циклооктатетраен также не удовлетворяет правилу Хюккеля, поскольку сопряженную систему образуют 8 электронов

Какие из соединений проявляют ароматические свойства

Рисунок 3

Конденсированные ароматические соединения

Правило Хюккеля можно применить к плоским конденсированным системам, в которых нет атомов, являющихся общими более чем для двух циклов. К таким системам относятся многоядерные ароматические углеводороды — нафталин, антрацен, фенантрен и т. д.

В этих соединениях все атомы углерода находятся в состоянии $sp^2$-гибридизации, циклический $sigma$-скелет плоский, $pi$-электронное облако охватывает все атомы углерода циклов, число $pi$-электронов подчиняется правилу Хюккеля (в нафталине 10, в антрацене и фенантрене 14 электронов)

Небензоидные ароматические системы

Правило Хюккеля не ограничивает проявление ароматичности только нейтральными молекулами. Ароматическими могут быть некоторые карбкатионы и карбанионы. В качестве примера можно привести циклопентадиенильный карбанион:

Рисунок 4

Все атомы углерода в цикле находятся в $sp^2$-гибридизации, в молекуле имеется плоский циклический $sigma$ -скелет и единая замкнутая сопряженная система, которая образована 6 электронами. Таким образом, циклопентадиенид-анион соответствует всем критериям ароматичности. Этот ион является $pi$-избыточной системой и может выступать донором электронной плотности по отношению к атомам или молекулам имеющим вакантную атомную орбиталь.Он образует с металлами так называемые металлоцены, примером которых может служить ферроцен:

Какие из соединений проявляют ароматические свойства

Рисунок 5

 Ферроцен — устойчивое соединение, выдерживает нагревание до 470оС, и не разлагается при кипячении с водными растворами $HCl$ или $NaOH$.

Еще один пример ароматического иона — циклогептатриенильный карбкатион (тропилий — катион):

Какие из соединений проявляют ароматические свойства

Рисунок 6

В тропилий катионе появляется седьмая $p$-орбиталь,и она перекрывается с соседними $p$-орбиталями, образуя единую сопряженную систему. Тропилий катион удовлетворяет критериям ароматичности. Положительный заряд равномерно распределен по всей сопряженной системе. В природе довольно широко распространена семичленная ароматическая система трополона. Некоторые производные трополона являются природными антибиотиками — фунгицидами.

Какие из соединений проявляют ароматические свойстваКакие из соединений проявляют ароматические свойства

Рисунок 7: трополон

Гетероциклические соединения

Правило Хюккеля также хорошо применимо ко многим гетероциклическим системам. Изображенные ниже молекулы таких гетероциклических систем, как имидазол, фуран, тиофен, пиррол, имеют плоское строение , и пара электронов на $p$-орбитали $sp^2$-гибридизованного гетероатома используется в них для дополнения ароматического секстета. $p$-АО орбитали перпендикулярны плоскости молекул.

Рисунок 8

Пиридин -ароматический гетероаналог бензола, у которого свободная электронная пара на атоме азота не участвует в сопряжении, и лежит в плоскости молекулы.

Какие из соединений проявляют ароматические свойства

 Рисунок 9

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 июня 2019;
проверки требуют 2 правки.

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряжённое кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении.

Ароматичность не имеет непосредственного отношения к запаху органических соединений и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряжённых двойных связей. Термин «ароматичность» был предложен потому, что первые исследованные представители этого класса веществ обладали приятным запахом.

К ароматическим соединениям относят обширную группу молекул и ионов разнообразного строения, которые соответствуют критериям ароматичности[⇨].

История[править | править код]

Бензол был впервые выделен М. Фарадеем в 1825 году. В 1833 году Э. Мичерлих впервые синтезировал бензол в лаборатории путём сплавления натриевой соли бензойной кислоты с гидроксидом натрия. Им же была установлена точная молекулярная формула бензола — C6H6[1].

В 1865 году Ф. Кекуле предложил первую структурную формулу бензола как гексагонального 1,3,5-циклогексатриена и ввёл понятие «ароматичность» для описания соединений, структурно близких к бензолу[2].

В 1931 году Э. Хюккель разработал квантово-механический подход для объяснения ароматичности. Этот подход используется до сих пор и называется методом молекулярных орбиталей Хюккеля (МОХ)[3].

В 1959 году Сол Винстайн[en] ввёл понятие «гомоароматичности». Этот термин применяется для описания систем, в которых стабилизированная циклическая сопряжённая система образуется в обход одного насыщенного атома[4].

Объяснение ароматичности[править | править код]

Ранние представления[править | править код]

Бензол и его гомологи обладали свойствами, которые невозможно было объяснить формулой Кекуле. Предпринимались попытки предложить другие структурные формулы, однако ни одна из них не объясняла всех наблюдаемых свойств ароматических соединений.

Метод молекулярных орбиталей Хюккеля[править | править код]

В 1930-х годах Хюккелем впервые были применены методы квантовой механики для объяснения необычных свойств ароматических соединений. В то время отсутствовали ЭВМ, способные находить решения уравнения Шредингера для сложных систем. В связи с этим важной задачей являлась разработка упрощенных методов решения подобных задач.

Читайте также:  Какое свойство имеет алюминий

В МОХ π-электронная система молекулы рассматривается независимо от σ-каркаса, что существенно упрощает всю задачу в целом[5].

Критерии ароматичности[править | править код]

Единого критерия, позволяющего надёжно классифицировать соединение как ароматическое или неароматическое, не существует. Основными характеристиками ароматических соединений являются:

  • склонность к реакциям замещения, а не присоединения (определяется легче всего, исторически первый признак; пример — бензол, в отличие от этилена не обесцвечивает бромную воду)
  • выигрыш по энергии, в сравнении с системой несопряжённых двойных связей. Также называется энергией резонанса (усовершенствованный метод — энергией резонанса Дьюара) (выигрыш настолько велик, что молекула претерпевает значительные преобразования для достижения ароматичного состояния, например циклогексадиен легко дегидрируется до бензола, двух- и трёхатомные фенолы существуют преимущественно в форме фенолов (енолов), а не кетонов и т. д.)
  • наличие кольцевого магнитного тока (наблюдение требует сложной аппаратуры), этот ток обеспечивает смещение хим-сдвигов протонов, связанных с ароматическим кольцом в слабое поле[прояснить] (7—8 м.д. для бензольного кольца), а протонов, расположенных над/под плоскостью ароматической системы — в сильное поле[прояснить] (спектр ЯМР).
  • наличие самой плоскости (минимально искаженной), в которой лежат все (либо не все — гомоароматичность) атомы, образующие ароматическую систему. При этом кольца π-электронов, образующиеся при сопряжении двойных связей (либо электронов входящих в кольцо гетероатомов), лежат над и под плоскостью ароматической системы.
  • практически всегда соблюдается правило Хюккеля: ароматичной может быть лишь система, содержащая (в кольце) 4n + 2 электронов (где n = 0, 1, 2, …). Система, содержащая 4n электронов, является антиароматичной (в упрощенном понимании это обозначает избыток энергии в молекуле, неравенство длин связей, низкую стабильность — склонность к реакциям присоединения). В то же время, в случае пери-сочленения (есть атом(ы), принадлежащий(е) одновременно трём циклам, то есть возле него (них) нет атомов водорода или заместителей), общее число π-электронов не соответствует правилу Хюккеля (фенален, пирен, коронен). Также предсказывается, что если удастся синтезировать молекулы в форме ленты Мёбиуса (кольцо достаточно большого размера, дабы закручивание в каждой паре атомных орбиталей было мало́), то для таких молекул система из 4n электронов будет ароматичной, а из 4n + 2 электронов — антиароматичной.

Современные представления[править | править код]

В современной физической органической химии выработана общая формулировка критерия ароматичности[6].

Ароматические соединения[править | править код]

Кроме бензольного кольца и его конденсированных аналогов, ароматические свойства проявляют многие гетероциклы — гетарены: пиррол, фуран, тиофен, пиридин, индол, оксазол и другие. При этом в сопряжённую систему шестичленных гетероциклов гетероатом отдает один электрон (по аналогии с углеродом), в 5-атомных — неподеленную электронную пару.

Одним из простейших ароматических соединений является бензол.

Эти соединения играют большую роль в органической химии и обладают многими химическими свойствами, свойственными только этому классу соединений.

Ароматизация[править | править код]

Ароматизация — образование ароматических соединений из соединений циклических и других типов.

В промышленности широко применяют процессы ароматизации продуктов переработки нефти для увеличения содержания в них ароматических углеводородов. Наибольшее значение имеет каталитический риформинг бензиновых фракций.

Процессы ароматизации протекают в условиях биохимического синтеза в растениях, животных, грибах и микроорганизмах. Одним из наиболее существенных метаболических путей, неотъемлемой частью которого выступают реакции ароматизации, является шикиматный путь.

Источники[править | править код]

  • Агрономов А. Е. Избранные главы органической химии. — 2-е. — Москва: Химия, 1990. — 560 с. — ISBN 5-7245-0387-5.
  • Горелик М. В. Современное состояние проблемы ароматичности // Успехи химии. — 1990. — Т. 59, № 2. — С. 197—228.

Примечания[править | править код]

  1. Перекалин В. В., Зонис С. А. Органическая химия. — М.: Просвещение, 1982. — С. 345—346. — 560 с. — 58 000 экз.
  2. Кнунянц И. Л. и др. Химическая энциклопедия. — М.: Советская энциклопедия, 1988. — Т. 1: А—Дарзана. — С. 200—202. — 100 000 экз.
  3. ↑ Реутов, 2004, с. 332.
  4. Richard Vaughan Williams. Homoaromaticity (англ.) // Chem. Rev.. — 2001. — Iss. 101, no. 5. — P. 1185–1204. — doi:10.1021/cr9903149.
  5. ↑ [www.xumuk.ru/encyklopedia/2/5108.html Метод Хюккеля — химическая энциклопедия]
  6. Реутов О. А. Органическая химия. — М.: Изд-во МГУ, 1999. — Т. 2. — С. 342. — 624 с. — ISBN 5-211-03491-0.

Литература[править | править код]

  • Реутов О. А., Курц А. Л., Бутин К. П. Часть 2 // Органическая химия. — М.: БИНОМ. Лаборатория знаний, 2004. — С. 328—367. — ISBN 5-94774-111-3.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • www.xumuk.ru/encyklopedia/2/5108.html

Источник