Какие химические свойства металлов и сплавов вам известны

Какие химические свойства металлов и сплавов вам известны thumbnail

На чтение 5 мин.

Металлические изделия и детали используются в разных сферах промышленности. Существует множество видов металлов и каждый из них обладает сильными и слабыми сторонами. При изготовлении деталей для машин, самолётов или промышленного оборудования мастера обращают внимание на характеристики материала. Поэтому требуется знать свойства металлов и сплавов.

Свойства металлов и сплавов

У металлов есть признаки, которые их характеризуют:

  1. Высокие показатели теплопроводности. Металлические материалы хорошо проводят электричество.
  2. Блеск на изломе.
  3. Ковкость.
  4. Кристаллическая структура.

Не все материалы прочные и обладают высокими показателя износоустойчивости. Это же касается плавления при высоких температурах.

Классификация металлов

Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.

Черные

Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:

  1. Железные — к представителям этой подгруппы относится железо, никель и кобальт.
  2. Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
  3. Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.

Существуют урановые и щелочноземельные металлы, однако они менее популярны.

Цветные

Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:

  1. Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
  2. Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
  3. Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.

Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.

Основные виды сплавов

Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.

Отдельное внимания требуют металлические сплавы из цветных металлов.

Производство стали

Цинковые сплавы

Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.

Алюминиевые сплавы

Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:

  1. Устойчивость к низким температурам.
  2. Электропроводность.
  3. Малый вес заготовок в сравнении с другими металлами.
  4. Износоустойчивость.

Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.

Алюминий применяется при изготовлении комплектующих к машинам, производстве деталей для самолётов, составляющих промышленного оборудования, посуды, инструментов. Не многие знают, что алюминий популярен в сфере производства оружия. Связано это с тем, что детали из алюминия не искрят при сильном трении.

Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.

Медные сплавы

Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.

Свойства сплавов

Чтобы изготавливать детали и конструкции, нужно знать основные свойства металлов и сплавов. При неправильной обработке готовая деталь может быстро выйти из строя и разрушить оборудование.

Двигатель внутреннего сгорания

Физические свойства

Сюда относятся визуальные параметры и характеристики материала, изменяющиеся при обработке:

  1. Теплопроводность. От этого зависит насколько поверхность будет передавать тепло при нагревании.
  2. Плотность. По этому параметру определяется количество материла, которое содержится в единице объёма.
  3. Электропроводность. Возможность металла проводить электрический ток. Этот параметр называется электрическое сопротивление.
  4. Цвет. Этот визуальный показатель меняется под воздействием температур.
  5. Прочность. Возможность материала сохранять структуру при обработке. Сюда же относится твердость. Эти показатели относятся и к механическим свойствам.
  6. Восприимчивость к действию магнитов. Это возможность материала проводить через себя магнитные лучи.

Физические основы позволяют определить в какой сфере будет использоваться материал.

Химические свойства

Сюда относятся возможности материала противостоять воздействию химических веществ:

  1. Устойчивость к коррозийным процессам. Этот показатель определяет на сколько материал защищён от воздействия воды.
  2. Растворимость. Устойчивость металла к воздействию растворителей — кислотам или щелочным составам.
  3. Окисляемость. Параметр указывает на выделение оксидов металлом при его взаимодействии с кислородом.

Обуславливаются эти характеристики химическим составом материала.

Механические свойства

Механические свойства металлов и сплавов отвечают за целостность структуры материала:

  • прочность;
  • твердость;
  • пластичность;
  • вязкость;
  • хрупкость;
  • устойчивость к механическим нагрузкам.

Технологические свойства

Технологические свойства определяют способность металла или сплава изменяться при обработке:

  1. Ковкость. Обработка заготовки давлением. Материал не разрушается. Структура изменяется.
  2. Свариваемость. Восприимчивость детали к работе сварочным оборудованием.
  3. Усадка. Происходит этот процесс при охлаждении заготовки после её разогрева.
  4. Обработка режущим инструментом.
  5. Ликвация (затвердевание жидкого металла при понижении температуры).

Основной способ обработки металлических деталей — нагревание.

Свойства металлов и сплавов отвечают за то, как себя будет вести готовое изделие при эксплуатации. При обработке материалов также важно знать его характеристики.

Источник

Физические свойства материалов (их показатели):

  • • цвет;
  • • плотность;
  • • теплопроводность;
  • • температура плавления;
  • • электропроводность;
  • • магнетизм;
  • • расширение при нагревании.

К химическим свойствам материалов относится межатомное взаимодействие материала с другими веществами.

Механические свойства материалов:

  • • прочность;
  • • твердость;
  • • упругость;
  • • пластичность;
  • • вязкость.

Физические свойства

Цвет металла (сплава) является одним из показателей, позволяющих судить о его свойствах. При нагревании металла по цвету поверхности можно примерно определить, до какой температуры он нагрет. Это используется при сварочных работах. Однако некоторые металлы (например, алюминий) при нагревании не изменяют цвет. Поверхность окисленного металла имеет иной цвет, чем неокисленного.

Плотность — отношение массы вещества к его объему. Плотность материала является одной из важнейших его характеристик, которая учитывается при проектировании, поскольку конструкции должны быть не только прочными, но и легкими.

Теплопроводность (теплообмен) — способность материала переносить тепловую энергию при неравномерном нагревании, имеет атомно-молекулярный характер, измеряется в Вт/(м • К).

Температура плавления — температура, при которой материал переходит из твердого состояния в жидкое. Чистые металлы имеют постоянную температуру плавления.

Электропроводность — способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля. Так как в автомобилях используются в основном металлические детали, электрическая сеть автомобилей выполняется по однопроводной схеме, вторым проводом является сам автомобиль, т. е. его «масса».

Магнитные свойства металлов широко используются в электрооборудовании автомобиля (генераторе, системе зажигания, электродвигателях, контрольно-измерительных приборах).

Способность металлов расширяться при нагревании — важное свойство, которое также учитывается при коструировании. Например, при сварке происходит местное нагревание лишь небольшого участка, и так как деталь в различных частях имеет не одинаковую температуру, то она деформируется. Детали, изготовленные из разных материалов, при нагревании расширяются по-разному. Это тоже может привести к деформациям и даже к разрушению конструкции.

Усадка — уменьшение объема расплавленного металла при его охлаждении. Вследствие усадки сварного шва, например, происходит коробление детали, появляются трещины или образуются усадочные раковины. Чем больше усадка, тем труднее получить качественное соединение.

Механические свойства

Механические свойства материалов, как правило, являются основными показателями, которые определяют его пригодность в различных условиях эксплуатации.

Прочность — способность материала в определенных условиях и пределах не разрушаться, воспринимая те или иные воздействия (нагрузки, неравномерное нагревание, магнитные и электрические поля).

Твердость — способность материала сопротивляться местной пластической деформации, возникающей при внедрении в него более твердого тела.

Упругость — свойство тела восстанавливать свою форму и объем после прекращения действия внешней силы (нагрузки, нагревания). Большой упругостью, например, должны обладать рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность тела необратимо изменять форму (деформироваться) под действием механических нагрузок. Пластичность — свойство, обратное упругости. Чем больше пластичность металла, тем он легче куется, штампуется, прокатывается.

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали несущей системы, подвески, колес автомобилей).

Химические свойства

Химические свойства металлов характеризуют их способность вступать в соединение с различными веществами (химическими элементами), и в первую очередь с кислородом. Чем легче металл вступает в соединение с различными химическими элементами, тем легче он разрушается. Разрушение металлов вследствие химического воздействия среды называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали: коррозионно- и кислотостойкие).

Технологические свойства

Совокупность физических, механических и химических свойств оказывает влияние на технологические свойства материала.

Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов создавать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно — другим. Например, дюралюминий хорошо сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литейную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла обрабатываться путем механической обработки (резание, фрезерование и т. д.), т. е. острым режущим инструментом (резцом, фрезой, ножовкой и т. д.).

Источник

Вопрос

Механические свойства

К основным механическим свойства относят:
— прочность
— пластичность
— твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.
Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:
— цвет
— плотность
— температуру плавления
— теплопроводность
— электропроводность
— магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.
Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:
— коррозионную стойкость
— жаростойкость

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:
— емкости для перевозки химических реактивов
— трубопроводы химических веществ
— приборы и инструменты в химической промышленности

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства — характеризуют способность материала к получению из него качественных отливок.
Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.
Усадка (линейная и объемная)– характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.
Ликвация – неоднородность химического состава по объему.

2. Способность материала к обработке давлением — это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.Критерием годности материала является отсутствие дефектов после испытания.

3. Свариваемость — это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием — характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость– способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость (см. Электрохимическая и химическая коррозия металлов) – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость (см. Жаростойкость. Жаростойкая сталь. Жаростойкие сплавы.) – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность – способность материала прирабатываться к другому материалу.

Вопрос

Кристаллизация металлов и сплавов

Процесс кристаллизации.
При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией.

Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация ипадение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации.Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А).
В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления ТПл, сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Тп, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения.Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис.Б)
Аморфные тела затвердевают постепенно. В этом случае кривая охлаждениябудет плавной, без горизонтальных площадок. (рис.В)
Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей — устойчивых центров кристаллизации и роста кристалликов вокруг этих центров.
Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами или зернами.
В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа.
Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен.
Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура.С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.

Источник