Какие химические свойства характерны для щелочных металлов

Группа → | 1 | ||||||
---|---|---|---|---|---|---|---|
↓ Период | |||||||
2 |
| ||||||
3 |
| ||||||
4 |
| ||||||
5 |
| ||||||
6 |
| ||||||
7 |
|
Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы)[1]: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.
Общая характеристика щелочных металлов[править | править код]
В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).
Некоторые атомные и физические свойства щелочных металлов
Атомный номер | Название, символ | Число природных изотопов | Атомная масса | Энергия ионизации, кДж·моль−1 | Сродство к электрону, кДж·моль−1 | ЭО | ΔHдисс, кДж·моль−1 | Металл. радиус, нм | Ионный радиус (КЧ 6), нм | tпл, °C | tкип, °C | Плотность, г/см³ | ΔHпл, кДж·моль−1 | ΔHкип, кДж·моль−1 | ΔHобр, кДж·моль−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Литий Li | 2 | 6,941(2) | 520,2 | 59,8 | 0,98 | 106,5 | 0,152 | 0,076 | 180,6 | 1342 | 0,534 | 2,93 | 148 | 162 |
11 | Натрий Na | 1 | 22,989768(6) | 495,8 | 52,9 | 0,99 | 73,6 | 0,186 | 0,102 | 97,8 | 883 | 0,968 | 2,64 | 99 | 108 |
19 | Калий К | 2+1а | 39,0983(1) | 418,8 | 46,36 | 0,82 | 57,3 | 0,227 | 0,138 | 63,07 | 759 | 0,856 | 2,39 | 79 | 89,6 |
37 | Рубидий Rb | 1+1а | 85,4687(3) | 403,0 | 46,88 | 0,82 | 45,6 | 0,248 | 0,152 | 39,5 | 688 | 1,532 | 2,20 | 76 | 82 |
55 | Цезий Cs | 1 | 132,90543(5) | 375,7 | 45,5 | 0,79 | 44,77 | 0,265 | 0,167 | 28,4 | 671 | 1,90 | 2,09 | 67 | 78,2 |
87 | Франций Fr | 2а | (223) | 380 | (44,0) | 0,7 | — | — | 0,180 | 20 | 690 | 1,87 | 2 | 65 | — |
119 | Унуненний Uue |
а Радиоактивные изотопы:
40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.
Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.
Литий
Натрий
Калий
Рубидий
Цезий
Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.
Химические свойства щелочных металлов[править | править код]
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.
Взаимодействие с водой[править | править код]
Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:
При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
Взаимодействие с кислородом[править | править код]
Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.
- Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
- При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:
- В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:
Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:
Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2−
2 и надпероксид-ион O−
2.
Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой увеличивается в ряду от Li до Cs:
Формула кислородного соединения | Цвет |
---|---|
Li2O | Белый |
Na2O | Белый |
K2O | Желтоватый |
Rb2O | Жёлтый |
Cs2O | Оранжевый |
Na2O2 | Светло- жёлтый |
KO2 | Оранжевый |
RbO2 | Тёмно- коричневый |
CsO2 | Жёлтый |
Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:
Пероксиды и надпероксиды проявляют свойства сильных окислителей:
Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:
Взаимодействие с другими веществами[править | править код]
Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:
При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.
Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:
При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:
Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):
Качественное определение щелочных металлов[править | править код]
Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:
Окраска пламени щелочными металлами
и их соединениями
Щелочной металл | Цвет пламени |
---|---|
Li | Карминно-красный |
Na | Жёлтый |
K | Фиолетовый |
Rb | Буро-красный |
Cs | Фиолетово-красный |
Получение щелочных металлов[править | править код]
Электролиз расплавов галогенидов[править | править код]
Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:
катод: анод:
Электролиз расплавов гидроксидов[править | править код]
Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:
катод: анод:
Восстановление из галогенидов[править | править код]
Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:
Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.[источник не указан 3306 дней]
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.
Соединения щелочных металлов[править | править код]
Гидроксиды[править | править код]
Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:
катод: анод:
Прежде щёлочь получали реакцией обмена:
Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.
Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:
Гидроксиды щелочных металлов при нагревании возгоняются без разложения, за исключением гидроксида лития, который так же, как гидроксиды металлов главной подгруппы II группы, при прокаливании разлагается на оксид и воду:
Гидроксид натрия используется для изготовления мыла, синтетических моющих средств, искусственного волокна, органических соединений, например фенола.
Соли[править | править код]
Важным продуктом, содержащим щелочной металл, является сода Na2CO3. Основное количество соды во всём мире производят по методу Сольве, предложенному ещё в начале XX века. Суть метода состоит в следующем: водный раствор NaCl, к которому добавлен аммиак, насыщают углекислым газом при температуре 26—30 °C. При этом образуется малорастворимый гидрокарбонат натрия, называемый питьевой содой:
Аммиак добавляют для нейтрализации кислотной среды, возникающей при пропускании углекислого газа в раствор, и получения гидрокарбонат-иона HCO3−, необходимого для осаждения гидрокарбоната натрия. После отделения питьевой соды раствор, содержащий хлорид аммония, нагревают с известью и выделяют аммиак, который возвращают в реакционную зону:
Таким образом, при аммиачном способе получения соды единственным отходом является хлорид кальция, остающийся в растворе и имеющий ограниченное применение.
При прокаливании гидрокарбоната натрия получается кальцинированная, или стиральная, сода Na2CO3 и диоксид углерода, используемый в процессе получения гидрокарбоната натрия:
Основной потребитель соды — стекольная промышленность.
В отличие от малорастворимой кислой соли NaHCO3, гидрокарбонат калия KHCO3 хорошо растворим в воде, поэтому карбонат калия, или поташ, K2CO3 получают действием углекислого газа на раствор гидроксида калия:
Поташ используют в производстве стекла и жидкого мыла.
Литий — единственный щелочной металл, для которого не получен гидрокарбонат. Причина этого явления в очень маленьком радиусе иона лития, который не позволяет ему удерживать довольно крупный ион HCO−
3.
Безопасность[править | править код]
Все щелочные металлы проявляют высокую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями. Особенно опасны взаимодействия с водой, так как продуктами реакций являются едкие щёлочи, а также происходит огромное выделение энергии, сопровождаемое огненной вспышкой (в случае с калием) или взрывом (в случае с рубидием или цезием). Поэтому необходимо соблюдать правила безопасности при работе с ними. Работа должна проводиться исключительно в перчатках из латекса, также необходимо надевать защитные очки. В экспериментах используют только небольшие количества, манипуляции с которыми производят при помощи щипцов; в случае непрореагировавших остатков щелочных металлов (например, натрия или калия), применяют утилизацию в обезвоженном спирте. Рубидий и цезий ввиду чрезвычайно высокой химической активности (взрывоопасные) практически не применяют в опытах.
Литература[править | править код]
- Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
- Ерёмина Е. А., Рыжова О. Н. Глава 14. Щелочные металлы // Справочник школьника по химии. — М.: Экзамен, 2009. — С. 224—231. — 512 с. — 5000 экз. — ISBN 978-5-377-01472-0.
- Кузьменко Н. Е. , Ерёмин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы. — М.: Экзамен, 1997—2001.
- Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. — М.: Химия, 1987.
- Некрасов Б. В. Основы общей химии. — М.: Химия, 1974.
- Спицын В. И., Мартыненко Л. И. Неорганическая химия. — М.: МГУ, 1991, 1994.
- Турова Н. Я. Неорганическая химия в таблицах. Учебное пособие. — М.: Высший химический колледж РАН, 1997.
Примечания[править | править код]
См. также[править | править код]
- Щелочноземельные металлы
Ссылки[править | править код]
- Взаимодействие щелочных металлов с водой
- Щелочные металлы, видео
ЩЕЛОЧНЫЕ МЕТАЛЛЫ
К щелочным
металлам относятся элементы первой группы, главной подгруппы: литий, натрий,
калий, рубидий, цезий, франций.
Нахождение в природе
Na-2,64% (по
массе), K-2,5% (по массе), Li, Rb, Cs — значительно меньше, Fr- искусственно полученный
элемент
Li
Li2O • Al2O3 • 4SiO2 – сподумен
Na
NaCl –
поваренная соль (каменная соль), галит
Na2SO4
• 10H2O – глауберова соль
(мирабилит)
NaNO3
– чилийская селитра
Na3AlF6
— криолит
Na2B4O7· 10H2O — бура
K
KCl • NaCl – сильвинит
KCl • MgCl2 • 6H2O – карналлит
K2O
• Al2O3 • 6SiO2 – полевой шпат (ортоклаз)
Свойства щелочных металлов
С
увеличением порядкового номера атомный радиус увеличивается, способность
отдавать валентные электроны увеличивается и восстановительная активность увеличивается:
Физические свойства
Низкие
температуры плавления, малые значения плотностей, мягкие, режутся ножом.
Химические свойства
Типичные металлы, очень сильные восстановители. В
соединениях проявляют единственную степень окисления +1. Восстановительная
способность увеличивается с ростом атомной массы. Все соединения имеют ионный
характер, почти все растворимы в воде. Гидроксиды R–OH – щёлочи, сила их
возрастает с увеличением атомной массы металла.
Воспламеняются на воздухе при умеренном нагревании. С
водородом образуют солеобразные гидриды. Продукты сгорания чаще всего
пероксиды.
Восстановительная способность увеличивается в ряду Li–Na–K–Rb–Cs
1. Активно взаимодействуют с водой:
2Na + 2H2O
→ 2NaOH + H2 ОПЫТ
2Li + 2H2O
→ 2LiOH + H2
2. Реакция с кислотами:
2Na + 2HCl →
2NaCl + H2
3. Реакция с кислородом:
4Li + O2
→ 2Li2O(оксид
лития)
2Na + O2
→ Na2O2 (пероксид натрия)
K + O2
→ KO2 (надпероксид
калия)
На воздухе
щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических
растворителей (керосин и др.).
4. В реакциях с другими неметаллами
образуются бинарные соединения:
2Li + Cl2
→ 2LiCl (галогениды)
2Na + S → Na2S
(сульфиды)
2Na + H2
→ 2NaH (гидриды)
6Li + N2
→ 2Li3N (нитриды)
2Li + 2C → Li2C2 (карбиды)
5. Качественная реакция на катионы
щелочных металлов — окрашивание пламени в следующие цвета:
Li+
– карминово-красный
Na+
– желтый
K+,
Rb+ и Cs+ – фиолетовый
Видео «Окрашивание пламени солями калия и натрия»
Получение
Т.к.
щелочные металлы — это самые сильные восстановители, их можно восстановить из
соединений только при электролизе расплавов солей:
2NaCl=2Na+Cl2
Применение щелочных металлов
Литий —
подшипниковые сплавы, катализатор
Натрий —
газоразрядные лампы, теплоноситель в ядерных реакторах
Рубидий —
научно-исследовательские работы
Цезий –
фотоэлементы
Оксиды, пероксиды и надпероксиды щелочных металлов
Получение
Окислением металла получается только оксид лития
4Li + O2 → 2Li2O
(в остальных случаях получаются пероксиды или
надпероксиды).
Все оксиды (кроме Li2O) получают при
нагревании смеси пероксида (или надпероксида) с избытком металла:
Na2O2
+ 2Na → 2Na2O
KO2
+ 3K → 2K2O
«Самовозгорание цезия на воздухе»
Химические свойства
Типичные основные оксиды.
Реагируют с водой, кислотными оксидами и кислотами:
Li2O
+ H2O → 2LiOH
Na2O
+ SO3 → Na2SO4
K2O
+ 2HNO3→ 2KNO3 + H2O
Пероксид натрия Na2O2
Получение
2Na + O2 → Na2O2
Химические свойства
1. Сильный окислитель:
2NaI +
Na2O2 + 2H2SO4 → I2 +
2Na2SO4 + 2H2O
2Na2O2 + 2CO2 → 2Na2CO3
+ O2
2. Разлагается
водой:
Na2O2 + 2H2O → 2NaOH + H2O2
Надпероксид калия KO2
Получение
K + O2 → KO2
Химические свойства
1. Сильный
окислитель:
4KO2 + 2CO2 → 2K2CO3
+ 3O2
2. Разлагается
водой:
2KO2 + 2H2O → 2KOH + H2O2
+ O2
Гидроксиды щелочных металлов – ROH
Белые, кристаллические вещества, гигроскопичны; хорошо
растворимы в воде (с выделением тепла). В водных растворах нацело
диссоциированы.
NaOH-едкий натр, каустическая сода, KOH-едкое кали
Получение
1. Электролиз
растворов хлоридов:
2NaCl
+ 2H2O → 2NaOH + H2+ Cl2
2. Обменные
реакции между солью и основанием:
K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH
3. Взаимодействие
металлов или их основных оксидов (или пероксидов и надпероксидов) с водой:
2Li + 2H2O → 2LiOH + H2
Li2O + H2O → 2LiOH
Na2O2 + 2H2O → 2NaOH + H2O2
Химические свойства
1. R–OH – сильные основания (щелочи) реагируют с кислотными
оксидами и кислотами:
2NaOH +
CO2 → Na2CO3 + H2O
NaOH +
HCl → NaCl + H2O ОПЫТ
2. Взаимодействуют с солями, если в продуктах образуется нерастворимое основание: 3NaOH + FeCl3 → Fe(OH)3↓+ 3NaCl
Соли
Типично ионные соединения, как правило — хорошо
растворимы в воде, кроме некоторых солей лития.
Na2CO3 10H2O — кристаллическая сода
Na2CO3 — кальцинированная сода
NaHCO3 — питьевая сода
K2CO3 – поташ
Получение соды (дополнительно):
1.Аммиачный способ — насыщение раствора NaCl газами CO2 и NH3
NH3+CO2+H2O=NH4HCO3
NH4HCO3 +NaCl=NaHCO3↓+NH4Cl
NaHCO3 малорастворим на холоде.
2.Кальцинирование — прокаливание:
NaHCO3=Na2CO3+CO2+H2O
ДОПОЛНИТЕЛЬНО
Строение атома лития
Строение атома натрия
Хранение щелочных металлов
Литий
Калий
Натрий
Гидроксид натрия
Соединения щелочных металлов (1)
Соединения щелочных металлов (2)
Ожоги, вызванные неправильным обращением со щелочами
Правила безопасного обращения с гидроксидами
щелочных металлов. Оказание первой помощи пострадавшим от неправильного
обращения с гидроксидами щелочных металлов
ТРЕНАЖЁРЫ
Тренажёр №1 — Строение атомов элементов главной
подгруппы I группы и изменение свойств атомов с увеличением порядкового номера
элемента
Тренажёр №2 — Уравнения реакций щелочных металлов с
водой
Тренажёр №3 — Уравнения реакций щелочных металлов с
кислородом
Тренажёр №4 — Уравнения реакций щелочных металлов с
неметаллами
Тренажёр №5 — Характеристика лития
Тренажёр №6 — Характеристика натрия
Тренажёр №7 -Тестовые задания по теме
«Соединения щелочных металлов»
Тренажёр №8 — Уравнения реакций, с помощью которых
можно получить гидроксиды щелочных металлов
Тренажёр №9 — Уравнения реакций, характеризующих
химические свойства оксидов щелочных металлов
Тренажёр №10 — Формулы и названия соединений
щелочных металлов
Щелочные металлы
1. Положение в периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие со слабыми кислотами
7.2.6. Взаимодействие с солями
Оксиды щелочных металлов
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотами
Пероксиды щелочных металлов
1. Химические свойства
1.1. Взаимодействие с водой
1.2. Взаимодействие с кислотными и амфотерными оксидами
1.3. Взаимодействие с кислотами
1.4. Разложение
1.5. Взаимодействие с восстановителями
1.6. Взаимодействие с окислителями
Гидроксиды щелочных металлов (щелочи)
1. Способы получения
2. Химические свойства
2.1. Взаимодействие щелочей с кислотами
2.2. Взаимодействие щелочей с кислотными оксидами
2.3. Взаимодействие щелочей с амфотерными оксидами и гидроксидами
2.4. Взаимодействие щелочей с кислыми солями
2.5. Взаимодействие щелочей с неметаллами
2.6. Взаимодействие щелочей с металлами
2.7. Взаимодействие щелочей с солями
2.8. Разложение щелочей
2.9. Диссоциация щелочей
2.10. Электролиз щелочей
Соли щелочных металлов
Щелочные металлы
Положение в периодической системе химических элементов
Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.
Электронное строение щелочных металлов и основные свойства
Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns1, на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.
Рассмотрим некоторые закономерности изменения свойств щелочных металлов.
В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрица-тельность.
Физические свойства
Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.
Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.
Нахождение в природе
Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочные металлы:
Поваренная соль, каменная соль, галит — NaCl — хлорид натрия
Сильвин KCl — хлорид калия
Сильвинит NaCl · KCl
Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия
Едкое кали KOH — гидроксид калия
Поташ K2CO3 – карбонат калия
Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:
Способы получения
Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):
2LiCl = 2Li + Cl2
Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:
2NaCl (расплав) → 2Na + Cl2
Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).
Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:
KCl + Na = K↑ + NaCl
KOH + Na = K↑ + NaOH
Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:
Са + 2CsCl → 2Cs + CaCl2
В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.
Качественные реакции
Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов.
Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный
Химические свойства
1. Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.
1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:
2K + I2 = 2KI
1.2. Щелочные металлы реагируют с серой с образованием сульфидов:
2Na + S = Na2S
1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:
3K + P = K3P
2Na + H2 = 2NaH
1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:
6Li + N2 = 2Li3N
Остальные щелочные металлы реагируют с азотом при нагревании.
1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:
2Na + 2C = Na2C2
1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.
4Li + O2 = 2Li2O
2Na + O2 = Na2O2
K + O2 = KO2
Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.
2. Щелочные металлы активно взаимод?