Какие химические свойства характерны для алюминия

Какие химические свойства характерны для алюминия thumbnail

Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s22s22p63s23p1. Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне. В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3. Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.

Взаимодействие алюминия с простыми веществами

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О2 = 2Аl2О3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I2 =2AlI3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br2 = 2AlBr3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl2 = 2AlCl3

с серой

При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

2al-plus-3s-ravno-al2s3сульфид алюминия

с азотом

При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:

2al-plus-n2-ravno-2aln

с углеродом

При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

4al-plus-3c-ravno-al4c3

Взаимодействие алюминия со сложными веществами

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

2Al + 6H2O = 2Al(OH)3 + 3H2↑

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС. В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe2O3 = 2Fe + Аl2О3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

а) 2Аl + 3Н2SO4(разб.) = Аl2(SO4)3 + 3H2↑

2Аl0 + 6Н+ = 2Аl3+ + 3H20;

б) 2AI + 6HCl = 2AICl3 + 3H2↑

с кислотами-окислителями

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

8%d0%b0l-plus-15h2so4-ravno-4al2so43-plus-3h2s-plus-12%d0%bd2%d0%be

Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:

%d0%b0l-plus-4hno3-ravno-alno33-plus-no-plus-2%d0%bd2o

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:

8Al + 30HNO3(разб.) = 8Al(NO3)3 +3N2O↑ + 15H2O

8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2↑

так и с чистыми щелочами при сплавлении:

2al-plus-6naoh-tv-ravno-2naalo2-plus-2na2o-plus-3h2

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Аl2О3 + 2NaOH = 2NaAlO2 + Н2О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

Читайте также:  Определите какие свойства восприятия проявляются в следующих ситуациях

2Al + 6H2O = 2Al(OH)3 + 3H2↑

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH)3 + NaOH = Na[Al(OH)4]

Источник

Алюминий

Главную подгруппу III группы периодической системы со­ставляют бор (В),
алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Как видно из приведенных данных, все эти
элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де
Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)

(Германия)

Бор представляет собой неметалл.
Алюминий — переход­ный металл, а галлий, индий и таллий — полноценные метал­лы.
Таким образом, с ростом радиусов атомов элементов каждой группы периодической
системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим
свойства алюминия.

1. Положение
алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени
окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде
периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27.  Его соседом слева в таблице является магний –
типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий
должен проявлять свойства некоторого промежуточного характера и его соединения
являются амфотерными.

Al +13 )2)8)3    , p – элемент,

Основное состояние

1s22s22p63s23p1

Какие химические свойства характерны для алюминия

Возбуждённое состояние

1s22s22p63s13p2

Какие химические свойства характерны для алюминия

Алюминий проявляет в соединениях степень
окисления +3:

Al0 – 3 e- → Al+3

2. Физические свойства

Алюминий в свободном виде — се­ребристо-белый
металл, обладающий высокой тепло- и электро­проводностью. Температура плавления  650 оС. Алюминий имеет невысокую
плотность (2,7 г/см3) — при­мерно втрое меньше, чем у железа или
меди, и одновременно — это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает
1-е среди металлов и 3-е место среди
элементов
, уступая только кислороду и кремнию. Процент содержания алюминия
в земной коре по данным различных исследователей составляет от 7,45 до
8,14 % от массы земной коры.

В
природе алюминий встречается только в соединениях
(минералах).

 Некоторые
из них:

·        
Бокситы —
Al2O3 • H2O (с примесями SiO2, Fe2O3,
CaCO3)

·        
Нефелины —
KNa3[AlSiO4]4

·        
Алуниты — KAl(SO4)2 • 2Al(OH)3

·        
Глинозёмы
(смеси каолинов с песком SiO2, известняком CaCO3,
магнезитом MgCO3)

·        
Корунд —
Al2O3

·        
Полевой
шпат (ортоклаз) — K2O×Al2O3×6SiO2

·        
Каолинит —
Al2O3×2SiO2 × 2H2O

·        
Алунит — (Na,K)2SO4×Al2(SO4)3×4Al(OH)3

·        
Берилл —
3ВеО • Al2О3 • 6SiO2

Боксит

Какие химические свойства характерны для алюминия 

Al2O3

Корунд

Какие химические свойства характерны для алюминия 

Рубин

Какие химические свойства характерны для алюминия 

Сапфир

Какие химические свойства характерны для алюминия 

4.Химические
свойства алюминия и его соединений

Алюминий легко взаимодействует с
кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый
вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Алюминий

Какие химические свойства характерны для алюминия

Её толщина 0,00001 мм, но благодаря ней
алюминий не коррозирует. Для изучения 
химических свойств алюминия оксидную пленку удаляют. (При помощи
наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления
оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия
со ртутью – амальгамы).

I. Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре
активно реагирует со всеми галогенами, образуя галогениды. При нагревании он
взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и
углеродом (2000 °С), с йодом в присутствии катализатора — воды:

2Аl
+ 3S = Аl2S3  (сульфид алюминия),

2Аl
+ N2 = 2АlN  (нитрид
алюминия),

Аl
+ Р = АlР (фосфид алюминия),

4Аl
+ 3С = Аl4С3 (карбид алюминия).

2 Аl   + 
3  I2   =  2 AlI3 
(йодид алюминия)    ОПЫТ

Все эти соединения
полностью гидролизуются с образованием гидроксида алюминия и, соответственно,
сероводорода, аммиака, фосфина и метана:

Al2S3 + 6H2O
= 2Al(OH)3 + 3H2S­

Al4C3 + 12H2O
= 4Al(OH)3+ 3CH4­

В виде стружек или порошка он ярко горит
на воздухе, выде­ляя большое количество теплоты:

4Аl
+ 3O2 = 2Аl2О3 +
1676 кДж.

 ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

 ОПЫТ

II. Взаимодействие со сложными
веществами

Взаимодействие с водой

2 Al + 6 H2O  =  2 Al
(OH)3  +  3 H2

без оксидной пленки       

 ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий –
хороший восстановитель, так как является одним из активных металлов. Стоит в
ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов.
Такая реакция – алюмотермия – используется для получения чистых редких
металлов, например таких, как вольфрам, ваннадий и др.                                                                            

3 Fe3O4  +   8
Al =   4 Al2O3  +  9 Fe
+Q

Термитная смесь Fe3O4  и   Al
(порошок) –используется ещё и в термитной сварке. 

Сr2О3 +
2Аl = 2Сr + Аl2О3

Взаимодействие с кислотами:

С раствором
серной кислоты:  2 Al  + 3 H2SO4  =  Al2(SO4)3
+  3 H2

С холодными
концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную
кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен
восстанавливать эти кислоты без выделения водорода:

2Аl + 6Н2SО4(конц)
= Аl2(SО4)3
+ 3SО2 + 6Н2О,

Аl + 6НNO3(конц) = Аl(NO3)3 +
3NO2 + 3Н2О.

Взаимодействие со щелочами.

2 Al + 2 NaOH + 6 H2O  =  2 Na[Al(OH)4]  
+  3 H2

     ОПЫТ

Nal(ОН)4]тетрагидроксоалюминат
натрия

По
предложению химика Горбова, в русско-японскую войну эту реакцию использовали
для получения водорода для аэростатов.

С растворами солей:

2Al + 3CuSO4 = Al2(SO4)3 +
3Cu

Если
поверхность алюминия потереть солью ртути, то происходит реакция:

2Al + 3HgCl2
= 2
AlCl3
+ 3
Hg

Выделившаяся
ртуть растворяет алюминий, образуя  амальгаму
.

     Обнаружение ионов алюминия в растворах:              ОПЫТ

5. Применение алюминия и
его соединений

РИСУНОК 1

РИСУНОК 2

Физические и химические свойства
алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия 
является авиационная промышленность
: самолет на 2/3 состоит из
алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы
нести гораздо меньше пассажиров. Поэтому
алюминий называют крылатым металлом.
Из
алюминия изготовляют кабели и провода
: при одинаковой электрической проводимости
их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость
алюминия, из него изготовляют детали
аппаратов и тару для азотной кислоты
. Порошок алюминия является основой при
изготовлении серебристой краски для защиты железных изделий от коррозии, а
также для отражения  тепловых лучей такой
краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для
получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент
всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного
сок.

Соли алюминия сильно  гидролизуются. Данное свойство применяют в
процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое
количество гашеной извести для нейтрализации образующейся кислоты. В результате
выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой
взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является
коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ
получения алюминия был изобретен американцем Холлом и французом Эру в 1886
году. Он заключается в электролизе раствора оксида алюминия в расплавленном
криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3,
как вода растворяет сахар. Электролиз “раствора” оксида алюминия в
расплавленном криолите происходит так, как если бы криолит был только
растворителем, а оксид алюминия — электролитом.

2Al2O3 эл.ток→  4Al + 3O2

В
английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается
следующими словами: “23 февраля 1886 года в истории цивилизации начался новый
металлический век — век алюминия. В этот день Чарльз Холл, 22-летний химик,
явился в лабораторию своего первого учителя с дюжиной маленьких шариков
серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять
этот металл дешево и в больших количествах”. Так Холл сделался основоположником
американской алюминиевой промышленности и англосаксонским национальным героем,
как человек, сделавшим из науки великолепный бизнес.

2) 2Al2O3   +   3
C  = 
4 Al  +  3 CO2

 ЭТО ИНТЕРЕСНО:

  • Металлический
    алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед.
    Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного
    с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы
    восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид
    алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер.
    Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках
    алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за
    заслуги в развитии химии был награжден ценным подарком – весами, сделанными из
    золота и алюминия.
  • К 1855 году
    французский ученый  Сен- Клер Девиль
    разработал способ получения металлического алюминия в технических масштабах. Но
    способ был очень дорогостоящий. Девиль пользовался особым покровительством
    Наполеона  III, императора  Франции. В знак  своей преданности и благодарности Девиль изготовил
    для сына Наполеона, новорожденного принца, изящно гравированную погремушку –
    первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить
    своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В
    то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только
    после изобретения электролитического процесса алюминий по своей стоимости
    сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает
    расстройство нервной системы.  При его
    избытке нарушается обмен веществ. А защитными средствами является витамин С,
    соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется
    много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета
    «Сатурн» сжигает за время полёта 36 тонн алюминиевого порошка. Идея
    использования металлов в качестве компонента ракетного топлива впервые высказал
    Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр
№1 — Характеристика алюминия по положению в Периодической системе элементов Д.
И. Менделеева

Тренажёр
№2 — Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр
№3 — Химические свойства алюминия

ЗАДАНИЯ ДЛЯ
ЗАКРЕПЛЕНИЯ

№1.
Для получения алюминия из хлорида алюминия в качестве восстановителя можно
использовать металлический кальций. Составьте уравнение данной химической
реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций:
Al + H2SO4 (раствор) ->
Al + CuCl2 ->
Al + HNO3(конц) -t->

Al + NaOH + H2O ->

№3.
Осуществите превращения:
Al -> AlCl3 -> Al -> Al2S3 ->
Al(OH)3 -t->Al2O3 -> Al

№4.
Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора
гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите
процентный состав сплава, если его общая масса была 10 г?

Источник

Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе
металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.

Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.

При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.

Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3AlF6). Галлий, индий и
таллий получают схожим образом — методом электролиза их оксидов и солей.

  • Реакции с неметаллами
  • При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.

    Al + O2 → Al2O3 (снаружи Al покрыт оксидной пленкой — Al2O3)

    Al + Br2 → AlBr3 (бромид алюминия)

    При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.

    Al + F2 → (t) AlF3 (фторид алюминия)

    Al + S → (t) Al2S3 (сульфид алюминия)

    Al + N2 → (t) AlN (нитрид алюминия)

    Al + C → (t) Al4C3 (карбид алюминия)

    Карбид алюминия

  • Реакции с кислотами и щелочами
  • Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι — двойственный), вступает в реакции как с кислотами, так и с основаниями.

    Al + HCl → AlCl3 + H2

    Al + H2SO4(разб.) → Al2(SO4)3 + H2↑

    Al + H2SO4(конц.) → (t) Al2(SO4)3 + SO2↑ + H2O

    Al + HNO3(разб.) → (t) Al(NO3)3 + N 2O + H2O

    Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде — выделяется водород)

    При прокаливании комплексные соли не образуются, так вода испаряется:

    Na[Al(OH)4] → (t) NaAlO2 + H2O

  • Реакция с водой
  • При комнатной температуре не идет из-за образования оксидной пленки — Al2O3 — на воздухе. Если разрушить оксидную пленку
    нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) — реакция идет.

    Al + H2O → (t) Al(OH)3 + H2↑

    Реакция алюминия с водой

  • Алюминотермия
  • Алюминотермия (лат. Aluminium + греч. therme — тепло) — способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов
    алюминием. Температуры при этом процессе могут достигать 2400°C.

    С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.

    Fe2O3 + Al → (t) Al2O3 + Fe

    Cr2O3 + Al → (t) Al2O3 + Cr

    MnO2 + Al → (t) Al2O3 + Mn

    Алюминотермия

    Оксид алюминия

    Оксид алюминия получают в ходе взаимодействия с кислородом — на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид
    алюминия, как нерастворимое основание, легко разлагается на оксид и воду.

    Al + O2 → Al2O3

    Al(OH)3 → (t) Al2O3 + H2O↑

    Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.

    Al2O3 + H2SO4 → Al2(SO4)3 + H2O

    Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)

    Al2O3 + NaOH → (t) NaAlO2 + H2O (алюминат натрия)

    Al2O3 + Na2O → (t) NaAlO2

    Комплексные соли

    Гидроксид алюминия

    Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия
    часто выпадает белый осадок — гидроксид алюминия.

    AlBr3 + LiOH → Al(OH)3↓ + LiBr

    Al(NO3)3 + K2CO3 → KNO3 + Al(OH)3↓ + CO2 (двойной гидролиз:
    Al(NO3)3 гидролизуется по катиону, K2CO3 — по аниону)

    Al2S3 + H2O → Al(OH)3↓ + H2S↑

    Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.

    Al(OH)3 + H2SO4 → Al2(SO4)3 + H2O

    Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание — Li3[Al(OH)6] —
    гексагидроксоалюминат лития)

    Алюминий

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
    (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
    без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
    обратитесь, пожалуйста, к Беллевичу Юрию.

    Источник

    Читайте также:  Какие свойства лазерного излучения используют на практике