Какие хим элементы содержатся в клетке относятся к макроэлементам
Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.
Таблица 1. Содержание химических элементов в клетке
Элемент | Количество, % | Элемент | Количество, % |
Кислород | 65-75 | Кальций | 0,04-2,00 |
Углерод | 15-18 | Магний | 0,02-0,03 |
Водород | 8-10 | Натрий | 0,02-0,03 |
Азот | 1,5-3,0 | Железо | 0,01-0,015 |
Фосфор | 0,2-1,0 | Цинк | 0,0003 |
Калий | 0,15-0,4 | Медь | 0,0002 |
Сера | 0,15-0,2 | Иод | 0,0001 |
Хлор | 0,05-0,10 | Фтор | 0,0001 |
По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос — большой).
Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро — малый).
Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.
Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.
Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ — минеральных солей и воды.
Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.
(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)
Из неорганических веществ в живой природе огромную роль играет вода.
Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.
Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?
В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет
частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.
Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.
Гидрофильными (от греч. гидро — вода и филео — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).
Гидрофобными (от греч. гидро — вода и фобос — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.
Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.
Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.
НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ
В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).
К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.
ЭЛЕМЕНТЫ | СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) | БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ |
Макроэлементы: | ||
O.C.H.N | 62-3 | Входят в состав всех органических веществ клетки, воды |
Фосфор Р | 1,0 | Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов |
Кальций Са+2 | 2,5 | У растений входит в состав оболочки клетки, у животных — в состав костей и зубов, активизирует свертываемость крови |
Микроэлементы: | 1-0,01 | |
Сера S | 0,25 | Входит в состав белков, витаминов и ферментов |
Калий К+ | 0,25 | Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений |
Хлор CI- | 0,2 | Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты |
Натрий Na+ | 0,1 | Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов |
Магний Мg+2 | 0,07 | Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен |
Йод I- | 0,1 | Входит в состав гормона щитовидной железы — тироксина, влияет на обмен веществ |
Железо Fе+3 | 0,01 | Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам |
Ультрамикроэлементы: | менее 0,01, следовые количества | |
Медь Си+2 | Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы | |
Марганец Мn | Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения | |
Бор В | Влияет на ростовые процессы растений | |
Фтор F | Входит в состав эмали зубов, при недостатке развивается кариес, при избытке — флюороз | |
Вещества : | ||
Н20 | 60-98 | Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций |
ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ
ВЕЩЕСТВА | СТРОЕНИЕ И СВОЙСТВА | ФУНКЦИИ |
Липиды | ||
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью | Строительная — образует билипидный слой всех мембранных. Энергетическая. Терморегуляторная. Защитная. Гормональная (кортикостероиды, половые гормоны). Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество | |
Углеводы | ||
Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза | Хорошо растворимы в воде | Энергетическая |
Дисахариды: сахароза, мальтоза (солодовый сахар) | Растворимы в воде | Компоненты ДНК, РНК, АТФ |
Полисахариды: крахмал, гликоген, целлюлоза | Плохо растворимы или нерастворимы в воде | Запасное питательное вещество. Строительная — оболочка растительной клетки |
Белки | Полимеры. Мономеры — 20 аминокислот. | Ферменты — биокатализаторы. |
I структура — последовательность аминокислот в полипептидной цепи. Связь — пептидная — СО- NH- | Строительная — входят в состав мембранных структур, рибосом. | |
II структура — a -спираль, связь — водородная | Двигательная (сократительные белки мышц). | |
III структура — пространственная конфигурация a -спирали (глобула). Связи — ионные, ковалентные, гидрофобные, водородные | Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин) | |
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию | ||
Нуклеиновые кислоты: | Биополимеры. Состоят из нуклеотидов | |
ДНК — дезокси-рибонуклеино-вая кислота. | Состав нуклеотида: дезоксирибоза, азотистые основания — аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению | Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах |
РНК — рибонуклеиновая кислота. | Состав нуклеотида: рибоза, азотистые основания — аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь | |
Информационная РНК | Передача информации о первичной структуре белка, участвует в биосинтезе белка | |
Рибосомальная РНК | Строит тело рибосомы | |
Транспортная РНК | Кодирует и переносит аминокислоты к месту синтеза белка — рибосомам | |
Вирусная РНК и ДНК | Генетический аппарат вирусов |
Ферменты.
Важнейшая функция белков — каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.
В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.
Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.
Последовательность взаимодействия фермента и субстрата можно изобразить схематично:
Субстрат+Фермент — Фермент-субстратный комплекс — Фермент+Продукт.
Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество — продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.
Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.
Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.
Ферменты — это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов — специфичность действия в определенных условиях.
Нуклеиновые кислоты.
Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. нуклеус — ядро).
В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.
Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.
Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.
Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.
Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.
Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.
В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.
Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.
ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток — в два раза меньше — 3,3 х 10-12 г.
Молекулы нуклеиновых кислот — ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК — хранение наследственной информации.
АТФ.
В клетках всех организмов имеются молекулы АТФ — аденозинтрифосфорной кислоты. АТФ — универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ — это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания — аденина, углевода — рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, — богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.
При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ — аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ — аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ — в АТФ.
Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.
Рис. 12. Схема строения АТФ.
аденин – |
Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов — А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ — универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.
Человечеству давно известно про необходимость употребления достаточного количества макроэлементов с пищей или водой. Изучены негативные последствия их недостатка для организма человека. Разработаны различные поливитаминные комплексы с целью восстановления их баланса. В данной статье рассмотрим их значение для человека.
Макроэлементы – это химические элементы, входящие в состав таблицы Менделеева, участвующие в физиологических реакциях. Поступают с пищей и водой. Отличие от микроэлементов заключается в количестве, необходимом организму. Данный порог выявлен: 200 мг. Вещество из периодической таблицы, которые требуются человеку в дозе меньше 200 мг в сутки, носит название микроэлемента.
Классификация макроэлементов
К макроэлементам относятся азот, кислород, углерод, водород. Они составляют основу клеток и тканей, представлены различными соединениями. Водород и кислород составляют молекулу воды. Без кислорода невозможна жизнь. При отсутствии притока кислорода с кровью на протяжении 3 минут, человеческий мозг погибает.
Макроэлемент азот – важнейшая составляющая аминокислот, которые являются строительными кирпичиками белков. Все знают, что белок – наш строительный материал. Это наш мышечно-скелетный каркас. Все ферменты – белки. А без ферментов ни один физиологический процесс невозможен. Углерод присутствует в каждой клеточке. Обмен его соединений обеспечивает энергией жизнедеятельность клетки, органов, всего организма. Рассмотрим, еще какие химические элементы называются макроэлементами. Это калий, кальций, магний, сера, хлор, фосфор, натрий.
Роль макроэлементов в организме человека
Макроэлементы в организме человека играют чрезвычайно важную роль. Без достаточного присутствия калия нарушатся процессы свертывания крови. Без элемента калия невозможна работа сердечной мышцы, возможна остановка сердца.
Макроэлемент хлор чрезвычайно важен в поддержании кислотно-основного баланса крови (pH крови) и клеток. Благодаря натрию также происходят процессы возбуждения клетки, передача импульсов. Фосфор – важнейший элемент клеточных мембран. Он регулирует кальциевый обмен в организме.
Кальций – строительный материал костей. Без кальция невозможно мышечное сокращение. При недостатке его возникают мышечные спазмы, особенно, в ночное время. Кальций влияет на проницаемость сосудов. Магний – важнейший элемент многих физиологических процессов. При его недостатке возникают мышечные спазмы, нарушения в нормальной работе нервной системы.
Таблица макроэлементов, их основная характеристика, содержание в продуктах питания
Рассмотрим макроэлементов список подробнее:
Калий K
Элемент | Польза | Дефицит | Источники макроэлементов |
---|---|---|---|
Калий | • Участвует в расслаблении и сокращении мышц (калиево-натриевый насос). • В т.ч., сердца | • В дефиците возможно замедление ритма, аритмии, остановка сердца. • Гипотония мышц, вплоть до параличей | Виноград. Печеный картофель. Морковь. Болгарский перец. Дрожжи. Изюм. |
Кальций
Элемент | Польза | Дефицит | Где содержится |
---|---|---|---|
Кальций | • Составляющая часть костей, зубов. • Участвует в сократительной способности мышц. • Влияет на проницаемость мембраны клетки. • Влияет на свертываемость крови. • Отвечает за состояние волос. • Синтез гормонов | • Остеопороз. • Рахит у детей. • Судороги в икроножных мышцах. • Ломкость волос. • Хрупкость сосудов. | Кунжутное семя. Продукты из молока. Сардина. Крапива. Капуста белокочанная и цветная. Курага Миндаль Репа Фасоль Стоит иметь ввиду, что кальций и железо являются антагонистами. |
Магний
Элемент | Для чего нужен | Недостаток | Источники |
---|---|---|---|
Магний | • В составе зубов, волос. • Кофактор многих более 300 ферментов. • Участвует в обмене углеводов, белков, в синтезе нуклеиновых кислот. • Способствует образованию АТФ. • Нормализует сердечный ритм, давление. • Регулирует процесс торможения в ЦНС. • Препятствует тромбообразованию. • Расслабляет гладкую мускулатуру. • Участвует в синтезе нейромедиаторов. | • Ломкость ногтей, волос. • Аритмии, гипертония. • Неврозы, раздражительность, тики, бессонница. • Непроизвольное сокращение мышц, судороги в ногах, онемение, зуд. • Выкидыши, невынашивание беременности, предменструальный синдром. • Запоры, камнеобразование в желчных путях. • Депрессия. • Спастический колит, диарея. • Бронхоспазм. | Зелень. Какао. Гречка. Овсяная крупа. Отруби: рисовые, пшеничные, овсяные. Бобовые и зерновые культуры Кунжут, семена тыквы и подсолнечника. Минеральная вода. |
Натрий
Название элемента | Характеристика | Дефицит | Продукты |
---|---|---|---|
Натрий | • Регулятор баланса внеклеточной и внутриклеточной жидкости в организме. Предотвращает клетку от разрыва или от обезвоживания. • Обеспечивает передачу нервных импульсов. • Обеспечивает кислотно-основное равновесие. • Переносит в клетку глюкозу и аминокислоты. • Расширяет сосуды. • Участвует в переносе углекислого газа к легким. • Способствует синтезу пищеварительных ферментов. | • Обезвоживание организма, слабость, апатия, потеря сознания. • Аритмия. • Судороги. • Выпадение волос, кожа становится морщинистой. | Соль. Соленья. Морские водоросли. Томаты. Свекла. Репа. |
Сера
Название элемента | Функции | Недостаток | Содержание в продуктах |
---|---|---|---|
Сера | • Входит в состав ферментов, аминокислот, гормонов, молекулы белка сцепляются между собой благодаря дисульфидному мостику. • Есть в составе инсулина. • Коллаген состоит из серы. • Благодаря этому укрепляет мышцы, связки, суставы, соединительную ткань. • Участвует в витаминообразовании (В). • Соединения серы – антиоксиданты. Гепарин содержит серу. | • Гипергликемия – повышения сахара. • Ломкость ногтей. • Недостаточная упругость кожи. • Патология сустава, связок, болевой синдром. • Диспепсические явления. • Гиперхолестеринемия. | Мясные продукты. Бобовые. Орехи. Молочные. Яйца. Минеральная вода. |
Фосфор
Элемент | Функции фосфора | Симптомы недостатка | Где содержится |
---|---|---|---|
Фосфор | • Строительный материал фосфолипидов, гидроксилапатита (кости),зубов – фторапатита. • Есть в составе нуклеиновых кислот, АТФ. • Обеспечивает кислотно-основное равновесие. • Участвует в ферментообразовании. | • Остеопороз, рахит. • Снижение умственной деятельности. • Ухудшение работы эндокринных желез. • Снижение иммунной защиты организма. • Быстрая утомляемость. | Мясные продукты. Яйца. Злаки. Орехи. Подсолнечник. Тыква. |
Хлор
Элемент | Характеристика | Дефицит | Где содержится |
---|---|---|---|
Хлор | • Поддержание водно-солевого баланса. • Обеспечивает пищеварение благодаря наличию в соляной кислоте желудка. • Выводит углекислый газ из организма. | • Мышечная слабость. • Сонливость. • Сухость во рту. • Отсутствие аппетита. Стремительное снижение – кома. | Поваренная соль. Морские водоросли. Хлеб. Мясо. |
Симптомы избытка и дефицита в организме человека
В результате соблюдения диеты, патологии в организме, возможно снижение содержания макроэлементов. К чему это приводит указано в таблице. Избыточное поступление в организм, либо сбой в регуляции обмена элементов, приводит к накоплению в органах и тканях.
Избыточное содержание макроэлемента кальция в организме приводит к его откладыванию в сосудах, что чревато повышением давления и ускоренным образованиям атеросклеротических бляшек. Откладывание в органах ведет к образованию очагов кальцинатов. Если этот очаг находится в головном мозге, то возможно развитие эпилептических приступов, галлюцинаций. Для мускулатуры характерно снижение мышечного тонуса, что ведет, например к брадикардии. Характерно повышенное камнеобразование в желчном пузыре, мочевыводящей системе. А также характерно развитие гиперацидного гастрита. К подобным состояниям может привести, к примеру, злокачественное новообразование костной ткани, при котором в организме идет усиленно разрушение костной ткани.
Избыток магния возникает при передозировке витаминами, препаратами магния. Такие болезни, как онкология, миеломная болезнь, почечная недостаточность могут привести к избытку. При этом наблюдается заторможенность, вплоть до комы, аритмии, повышение давления.
В результате злоупотребления солью в организме может возникнуть гипернатриемия. Об этом можно догадаться при появлении отеков тела. А также к этому состоянию приводят заболевания почек и надпочечников. Повышение уровня элемента серы недостаточно изучено. Известно, что оно проявляется аллергическими высыпаниями, проблемами с ЖКТ.
Гиперфосфатемия возможна в результате повышенного употребления белковых продуктов. Это чревато формированием камней в мочевыделительной и желчевыделительной системах, вымыванием макроэлемента кальция из костей, невропатией, анемией. Гиперхлоремия протекает образованием отеков, в более тяжелых случаях – повышение АД, нарушением сознания, комой, перебоями в работе сердца.
При здоровом питании, отсутствии ограничений в еде, человек обеспечивает себя всеми необходимыми элементами. Достаточно прислушаться к нему и дать то, что он требует.
Adblock
detector