Какие характерные свойства присущи металлам
Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.
Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:
- 6 элементов в группе щелочных металлов,
- 6 в группе щёлочноземельных металлов,
- 38 в группе переходных металлов,
- 11 в группе лёгких металлов,
- 7 в группе полуметаллов,
- 14 в группе лантаноиды + лантан,
- 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
- вне определённых групп бериллий и магний.
Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.
В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия
Характерные свойства металлов
- Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
- Хорошая электропроводность
- Возможность лёгкой механической обработки
- Высокая плотность (обычно металлы тяжелее неметаллов)
- Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
- Большая теплопроводность
- В реакциях чаще всего являются восстановителями.
Физические свойства металлов
Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.
Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.
Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Химические свойства металлов
На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)
Реакции с простыми веществами
- С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
оксид лития
пероксид натрия
надпероксид калия
Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:
Со средними и малоактивными металлами реакция происходит при нагревании:
- С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:
При нагревании:
- С серой реагируют все металлы, кроме золота и платины:
Железо взаимодействует с серой при нагревании, образуя сульфид:
- С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
- С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
Взаимодействие кислот с металлами
Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения, которая также является окислительно-восстановительной:
Взаимодействие серной кислоты H2SO4 с металлами
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:
Очень разбавленная кислота реагирует с металлом по классической схеме:
При увеличении концентрации кислоты образуются различные продукты:
Реакции для азотной кислоты (HNO3)
При взаимодействии с активными металлами вариантов реакций ещё больше:
В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы.
Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений.
В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:
Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.
Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.
Общие химические свойства металлов
1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:
с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;
с серой металлы образуют сульфиды – соли сероводородной кислоты;
с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1);
с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия — пероксид $Na_2O_2$; а калий и цезий горят с образованием надпероксидов $MeO_2$.
2) Следует обратить внимание на особенности взаимодействие металлов с водой:
Активные металлы, находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:$Ca + 2H_2O = Ca(OH)_2 + H_2uparrow$
Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.
Металлы средней активности окисляются водой при нагревании до оксида:
$6Cr + 6H_2O xrightarrow[]{t, ^circ C} 2Cr_2O_3 + 3H_2uparrow$
Неактивные металлы (Au, Ag, Pt) — не реагируют с водой.
$hspace{1.5cm} xrightarrow []{[Li……Mg]} MOH +H_2uparrow$ активные металлы (до Al)
$H_2O + M xrightarrow []{[Al……Pb} M_xO_y +H_2uparrow$ среднеактивные металлы (от Al до H), только при нагревании
$hspace{1.5cm} xrightarrow []{[Bi……Au]} hspace{1cm} ne hspace{1cm}$ неактивные металлы (после Н)
Более подробно взаимодействие металлов с водой рассмотрено в темах, посвященных химии отдельных групп.
3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода:
$mathrm{Mg} + 2mathrm{HCl} = mathrm{MgCl}_2 + mathrm{H}_2$
4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли в этих реакциях образуется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему «Взаимодействие азотной кислоты с металлами и неметаллами.
Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).
5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла. Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений.
Запомнить! Для протекания реакции между металлом и солью другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде. Металл вытесняет из соли только более слабый металл.
Например, для вытеснения меди из водного раствора сульфата меди подходит железо,
$mathrm{CuSO}_4 + mathrm{Fe} = mathrm{FeSO}_4 + mathrm{Cu}$
но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится
$mathrm{CuSO}_4 + mathrm{Pb} = mathrm{PbSO}_4downarrow + mathrm{Cu}$
Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает.
Общие химические свойства металлов обобщены в таблице:
Уравнение реакции | Продукты реакции | Примечания |
---|---|---|
с простыми веществами — неметаллами | ||
с кислородом | ||
$4Li + O_2 = 2Li_2O$ | оксиды $O^{-2}$ | |
$2Na + O_2 = Na_2O_2$ | пероксиды $(O_2)^{-2}$ | только натрий |
$K + O_2 = KO_2$ | надпероксиды $(O_2)^{-2}$ | надпероксиды при горении образуют K, Rb, Cs |
с водородом | ||
$Ca + H_2 = CaH_2$ | гидриды | щелочные металлы 0 при комнатной температуре; остальные металлы — при нагревании |
с галогенами | ||
$2Fe + 3Cl_2 =2Fe^{+3}Cl_3$ | хлориды и др. | при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3 |
с серой | ||
$Fe + S = FeS$ | сульфиды | при взаимодействии с серой и иодом железо приобретает степень окисления +2 |
с азотом и фосфором | ||
$3Mg + N_2 = Mg_3N_2 $ | нитриды | * при комнатной температуре с азотом реагируют только литий и магний |
$3Ca + 2P = Ca_3P_2$ | фосфиды | |
с углеродом | ||
$4Al + 3C = Al_4C_3$ | карбиды | |
с водой | ||
$2Na^0 + 2H_2O = 2NaOH + H_2 $ | Основание + $H_2$ | щелочные металлы |
$ Zn^0 + H_2O = ZnO + H_2$ | Оксид + $H_2$ | среднеактивные металлы, при нагревании |
$Au, Ag, Pt+ H_2O /ne $ | не реагируют | неактивные металлы (после Н) |
с окисдами менее активных металлов | ||
$2Al + 3ZnO = Al_2O_3 + 2Zn$ | др оксид + др.металл | |
с солями менее активных металлов | ||
$Fe+ CuSO_4 = Cu + FeSO_4$ | Др. соль + др. металл |
|
$Cu + AlCl_3 ne$ | ||
с кислотами | ||
$Fe + 2HCl = FeCl_2 + H_2 $ $6Na + 2H_3PO_4 = 2Na_3PO_4 + 3H_2 $ | Др. соль +водород | Металлы, стоящие в электрохимическом ряду напряжений до H реагируют с разбавленными кислотами (кроме $HNO_3$) |
$Cu + 2H_3PO_4 ne$ |
Анонимный вопрос · 3 апреля 2018
14,2 K
Свойства металлов делятся на несколько групп: физические, химические, механические и технологические.
1) Физические свойства: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность.
2) Химические свойства: окисляемость, растворимость и коррозионная стойкость.
3) Механические свойства: прочность, твердость, упругость, пластичность.
4) Технологические свойства: прокаливаемость, жидкотекучесть, ковкость, обрабатываемость резанием.
Слишком примитивно, кое-что неверно, что-то устарело (терминология). Не советую использовать.
Какие основные свойства у золота?
Engineer — programmer ⚡⚡ Разбираюсь в компьютерах, технике, электронике, интернете и… · zen.yandex.ru/gruber
Золото или Au является 79-ым элементов в таблице Менделеева и представляет собой благородный металл жёлтого цвета.
Физические свойства золота:
- твёрдый мягкий металл;
- температура плавления: 1064 градуса Цельсия;
- плотность металла: 19,3 г/см3;
- золото обладает низким электрическим сопротивлением.
Химические свойства золота:
- высокая инертность;
- низкая степень химической активности;
- не окисляется при обычных условиях;
- не растворяется в щелочах;
- растворяется только в следующих кислотах: серная, плавиковая, соляная, азотная.
Прочитать ещё 1 ответ
Есть ли разница между прочностью и твердостью?
Аналитик бизнеса и остальной жизни.
Прочность и твердость это разные понятия! Алмаз – один из самых твердых материалов, но гвоздь из него сломается, если по нему ударить обычным молотком, а стальной гвоздь – нет, хотя сталь не самый твердый металл. Или напильник из твердых сплавов очень твердый, что позволяет им стачивать что угодно, но он очень хрупкий и может сломаться при падении с высоты верстака. Давайте разберемся с этими понятими.
Прочность – способность всей конструкции или материала противостоять своему разрушению от внешнего воздействия.
Прочность материала выявляют нагрузкой образца из этого материала замером величин его упругих и пластических свойств и зависимости между напряжением и относительным удлинением. Но разные материалы по-разному реагируют на внешнее воздействие.
Материал может быть упругим, т.е. восстанавливать свою первоначальную форму после снятия внешних нагрузок. Численно эта упругость выражается величиной модуля упругости Е = tga, где а – угол наклона линии деформирования металла к оси абсцисс, и пределом упругости, т.е. таким максимальным напряжением, при котором деформации после снятия нагрузки исчезают.
Также материал может быть пластичным — сохранять деформированное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения. Мерой пластичности материала служит относительное остаточное удлинение при разрыве. Перед разрушением в образце в месте разрыва образуется «шейка», поперечное сечение образца уменьшается, и в зоне шейки развиваются большие местные пластические деформации. Относительное удлинение при разрыве складывается из равномерного удлинения на всей длине образца и локального удлинения в зоне шейки. Мерой пластичности может также служить относительное сужение при разрыве.
Ну и наконец, материал может быть хрупким — разрушаться при малых деформациях. Выявляется это свойство испытаниями на ударную вязкость на специальных маятниковых копрах. Под действием удара молота копра образец разрушается. Ударная вязкость КС определяется затраченной на разрушение образца работой, отнесенной к площади поперечного сечения. Один и тот же металл может разрушаться как вязко, т.е. с развитием значительных пластических деформаций, так и хрупко, в зависимости от целого ряда факторов. Таким образом, ударная вязкость является комплексным показателем, характеризующим состояние металла (хрупкое или вязкое), сопротивление динамическим (ударным) воздействиям, чувствительность к концентрации напряжений и служит для сравнительной оценки качестве материала.
Если материал подвергать постоянному переменному (циклическому), то при достаточно большом числе циклов разрушение может произойти гораздо раньше. Это явление называется усталостью металла. Поэтому рассчитывают еще и на циклическую прочность.
Твердость – свойство не всего образца, а поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала.
Обычно чем тверже материал, тем выше его статическая прочность. Так как испытание на твердость проводится без разрушения детали, широко применяют приближенную оценку прочности материала и правильности термообработки по величине твердости.
Твердость по Бринеллю (HB) определяют вдавливанием в испытуемый материал шарика из закаленной стали диаметром 10 мм под нагрузкой 3000 кгс. Число HB равно отношению силы, вдавливающей шарик, к площади поверхности полученного отпечатка.
Твердость по Роквеллу (HRC) определяют вдавливанием алмазного конуса в закаленную сталь. Число твердости HRC соответствует разности глубин проникновения конуса под действием основной нагрузки (150 кгс) и предварительной (10 кгс).
Ползучесть – свойство материала непрерывно деформироваться во времени без увеличения нагрузки. Ползучесть в металлах проявляется в основном при высоких температурах. Оценка степени ползучести производится по результатам длительных испытаний образцов на растяжение.
Прочитать ещё 2 ответа
Как обозначается металл в химии?
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Возможно, что под обозначением вы имеете в виде «Ме», так обозначают металлы в химии на общих схемах различных химических реакций (окисления, восстановления и т.д..) Но у каждого металла, как у простого вещества, есть свое принятое обозначение в таблице Менеделева: Fe (железо); Na (натрий) и т.д..
Что такое «усталость металла»?
По-простому — падение прочности на местах изгибов, подвергающихся постоянной нагрузке на изгиб, а также падение прочности деталей, находящихся под постоянной нагрузкой, например, болтов. От постоянной вибрации со временем пойдут трещины даже на ровном листе металла, а натянутые болты всегда потихоньку «текут». Сначала это может быть незаметно, но потом процесс развивается стремительно до трещины и даже разлома.
Срок службы нагруженного постоянными силами металлического изделия зависит от конструкции, металла, марки сплава, правильности обработки, например, закалки, допустимого падения прочности, правильности сборки изделия, интенсивности эксплуатации и т.д. Срок службы — это срок, до истечения которого металлическая деталь гарантированно сохраняет свою прочность в пределах расчётной. Он рассчитывается конструкторами при проектировании, и по достижении срока деталь должна быть заменена , или же списывается (изымается из эксплуатации) всё изделие. В некоторых случаях срок службы может быть продлён после контрольных испытаний.
Прочитать ещё 1 ответ
Существуют ли сплавы железа с пластиками?
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Сплавов таких точно нет. Уж слижком разные это материалы. Железо — чистый металл. А пластмассы — это многокомпонентная смесь на основе полимеров. Можно создать сталь: добавляя легирующие элементы в железо: другие металлы и неметаллы (кремний, углерод и т.д..). Но в чем то Вы правы и ваша мысль выражена уже давно: в создании композитных материалов. Композитные материалы это многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жёсткостью и т. д..