Какие гидроксиды обладают основными химическими свойствами
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 марта 2016;
проверки требует 1 правка.
Осно́вные гидрокси́ды — это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (—OH) и в водном растворе диссоциируют с образованием анионов ОН− и катионов. Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.
Получение[править | править код]
Классификация[править | править код]
Основания классифицируются по ряду признаков.
- По растворимости в воде.
- Растворимые основания (щёлочи): гидроксид лития LiOH, гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH, гидроксид таллия TlOH, гидроксид кальция Ca(OH)2
- Практически нерастворимые основания: Mg(OH)2, , Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3, Be(OH)2.
- Другие основания: NH3·H2O
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов. Исключение составляет гидроксид лития LiOH, хорошо растворимый в воде, но являющийся слабым основанием.
- По количеству гидроксильных групп в молекуле.
- Однокислотные (гидроксид натрия NaOH)
- Двукислотные (гидроксид меди(II) Cu(OH)2)
- Трехкислотные (гидроксид железа(III) Fe(OH)3)
- По летучести.
- Летучие: NH3, CH3-NH2
- Нелетучие: щёлочи, нерастворимые основания.
- По стабильности.
- Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
- Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
- По степени электролитической диссоциации.
- Сильные (α > 30 %): щёлочи.
- Слабые (α < 3 %): нерастворимые основания.
- По наличию кислорода.
- Кислородсодержащие: гидроксид калия KOH, гидроксид стронция Sr(OH)2
- Бескислородные: аммиак NH3, амины.
- По типу соединения:
- Неорганические основания: содержат одну или несколько групп -OH.
- Органические основания: органические соединения, являющиеся акцепторами протонов: амины, амидины и другие соединения.
Номенклатура[править | править код]
По номенклатуре IUPAC неорганические соединения, содержащие группы -OH, называются гидроксидами. Примеры систематических названий гидроксидов:
- NaOH — гидроксид натрия
- TlOH — гидроксид таллия(I)
- Fe(OH)2 — гидроксид железа(II)
Если в соединении есть оксидные и гидроксидные анионы одновременно, то в названиях используются числовые приставки:
- TiO(OH)2 — дигидроксид-оксид титана
- MoO(OH)3 — тригидроксид-оксид молибдена
Для соединений, содержащих группу O(OH), используют традиционные названия с приставкой мета-:
- AlO(OH) — метагидроксид алюминия
- CrO(OH) — метагидроксид хрома
Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3•n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется. Примеры названий:
- Tl2O3•n H2O — полигидрат оксида таллия(III)
- MnO2•n H2O — полигидрат оксида марганца(IV)
Особо следует именовать соединение NH3•H2O, которое раньше записывали как NH4OH и которое в водных растворах проявляет свойства основания. Это и подобные соединения следует именовать как гидрат:
- NH3•H2O — гидрат аммиака
- N2H4•H2O — гидрат гидразина
Химические свойства[править | править код]
- В водных растворах основания диссоциируют, что изменяет ионное равновесие:
это изменение проявляется в цветах некоторых кислотно-основных индикаторов:
- лакмус становится синим,
- метилоранж — жёлтым,
- фенолфталеин приобретает цвет фуксии.
- При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:
Примечание: реакция не идёт, если и кислота и основание слабые.
- При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
- Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
- Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
- Основания вступают в обменные реакции (реагируют с растворами солей):
- Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:
Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.
- Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами.
См. также[править | править код]
- Кислота
- Соли
- Оксиды
- Гидроксиды
- Теории кислот и оснований
Литература[править | править код]
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.
- Лидин Р.А. и др. Номенклатура неорганических веществ. — М.: КолосС, 2006. — 95 с. — ISBN 5-9532-0446-9.
Ãèäðîêñèäû – ýòî õèìè÷åñêèå ñîåäèíåíèÿ, ñîñòîÿùèå èç àòîìà ìåòàëëà è ãèäðîêñèëüíîé ãðóïïû (ÎÍ). Íàïðèìåð, ãèäðîêñèä íàòðèÿ – NaOH, ãèäðîêñèä êàëüöèÿ – Ca(OH)2, ãèäðîêñèä áàðèÿ – Ba(OH)2 è ò.ä.
Ïîëó÷åíèå ãèäðîêñèäîâ.
1. Ðåàêöèÿ îáìåíà:
CaSO4 + 2NaOH = Ca(OH)2 + Na2SO4,
2. Ýëåêòðîëèç âîäíûõ ðàñòâîðîâ ñîëåé:
2KCl + 2H2O = 2KOH + H2 ↑+ Cl2↑,
3. Âçàèìîäåéñòâèå ùåëî÷íûõ è ùåëî÷íî-çåìåëüíûõ ìåòàëëîâ èëè èõ îêñèäîâ ñ âîäîé:
Ê + 2H2O = 2KOH + H2 ↑,
Õèìè÷åñêèå ñâîéñòâà ãèäðîêñèäîâ.
1. Ãèäðîêñèäû èìåþò ùåëî÷íîé õàðàêòåð ñðåäû.
2. Ãèäðîêñèäû ðàñòâîðÿþòñÿ â âîäå (ùåëî÷è) è áûâàþò íåðàñòâîðèìûìè. Íàïðèìåð, KOH – ðàñòâîðÿåòñÿ â âîäå, à Ca(OH)2 – ìàëîðàñòâîðèì, èìååò ðàñòâîð áåëîãî öâåòà. Ìåòàëëû 1-îé ãðóïïû ïåðèîäè÷åñêîé òàáëèöû Ä.È. Ìåíäåëååâà äàþò ðàñòâîðèìûå îñíîâàíèÿ (ãèäðîêñèäû).
3. Ãèäðîêñèäû ðàçëàãàþòñÿ ïðè íàãðåâå:
Cu(OH)2=CuO + H2O.
4. Ùåëî÷è ðåàãèðóþò ñ êèñëîòíûìè è àìôîòåðíûìè îêñèäàìè:
2KOH + CO2 = K2CO3 + H2O.
5. Ùåëî÷è ìîãóò ðåàãèðîâàòü ñ íåêîòîðûìè íåìåòàëëàìè ïðè ðàçëè÷íûõ òåìïåðàòóðàõ ïî-ðàçíîìó:
NaOH + Cl2 = NaCl + NaOCl + H2O (õîëîä),
NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (íàãðåâ).
6. Âçàèìîäåéñòâóþò ñ êèñëîòàìè:
KOH + HNO3 = KNO3 + H2O.
Êàëüêóëÿòîðû ïî õèìèè | |
Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé. | |
Êàëüêóëÿòîðû ïî õèìèè |
Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ | |
Àëêàíû, âîäà, ãàëîãåíû, ìûëà, æèðû, ãèäðîêñèäû; îêñèäû, õëîðèäû, ïðîèçâîäíûå õèìè÷åñêèõ ýëåìåíòîâ òàáëèöû Ìåíäåëååâà | |
Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Õëîðèäû ìåòàëëîâ. | |
Õëîðèä ìåòàëëîâ ýòî ïðîèçâîäíîå îò õëîðîâîäîðîäíîé êèñëîòû è àòîìîì ìåòàëëà. | |
Õëîðèäû ìåòàëëîâ. |
Ôòîðîâîäîðîä. | |
Ôòîðîâîäîðîä ýòî êèñëîòà ñðåäíåé ñèëû HF . | |
Ôòîðîâîäîðîä. |
3. Гидроксиды
Среди
многоэлементных
соединений важную группу составляют гидроксиды. Некоторые из них
проявляют
свойства оснований (основные гидроксиды) – NaOH, Ba(OH)2
и т.п.; другие
проявляют свойства кислот (кислотные гидроксиды) – HNO3, H3PO4 и другие.
Существуют и амфотерные гидроксиды,
способные в зависимости от условий проявлять как свойства оснований,
так и
свойства кислот – Zn(OH)2,
Al(OH) 3
и т.п.
3.1.
Классификация,
получение и свойства оснований
Основаниями
(основными
гидроксидами) с позиции теории электролитической диссоциации являются
вещества,
диссоциирующие в растворах с образованием гидроксид-ионов ОН—.
По современной
номенклатуре их принято называть гидроксидами элементов с указанием,
если
необходимо, валентности элемента (римскими цифрами в скобках): КОН
– гидроксид
калия, гидроксид натрия NaOH,
гидроксид кальция Ca(OH)2,
гидроксид хрома (II) – Cr(OH)2,
гидроксид хрома (III) – Cr(OH)3.
Гидроксиды
металлов принято делить
на две группы: растворимые
в воде (образованные щелочными и щелочноземельными металлами
— Li, Na, K, Cs, Rb, Fr, Ca, Sr, Ba и поэтому
называемые щелочами) и нерастворимые в воде.
Основное различие между
ними заключается в том, что концентрация ионов ОН- в растворах
щелочей достаточно
высока, для нерастворимых же оснований она определяется растворимостью
вещества
и обычно очень мала. Тем не менее, небольшие равновесные концентрации
иона ОН- даже в
растворах нерастворимых
оснований определяют свойства этого класса соединений.
По числу
гидроксильных
групп (кислотность),
способных замещаться на кислотный остаток, различают:
— однокислотные
основания
– KOH, NaOH;
— двухкислотные
основания
– Fe(OH)2,
Ba(OH)2;
— трехкислотные
основания
– Al(OH)3,
Fe(OH)3.
Получение
оснований
1. Общим методом
получения оснований является реакция обмена, с помощью которой могут
быть
получены как нерастворимые, так и растворимые основания:
CuSO4
+ 2KOH = Cu(OH)2↓
+ K2SO4,
K2SO4
+ Ba(OH)2 = 2KOH + BaCO3↓.
При получении
этим
методом растворимых оснований в осадок выпадает нерастворимая соль.
При получении
нерастворимых в воде оснований, обладающих амфотерными свойствами,
следует
избегать избытка щелочи, так как может произойти растворение
амфотерного
основания, например,
AlCl3
+ 3KOH = Al(OH)3 + 3KCl,
Al(OH)3
+ KOH = K[Al(OH)4].
В подобных
случаях для
получения гидроксидов используют гидроксид аммония, в котором
амфотерные оксиды
не растворяются:
AlCl3
+ 3NH4OH
= Al(OH)3↓
+ 3NH4Cl.
Гидроксиды
серебра, ртути
настолько легко распадаются, что при попытке их получения обменной
реакцией
вместо гидроксидов выпадают оксиды:
2AgNO3
+ 2KOH = Ag2O↓
+ H2O + 2KNO3.
2. Щелочи в
технике
обычно получают электролизом водных растворов хлоридов:
2NaCl
+ 2H2O = 2NaOH + H2 + Cl2.
(суммарная
реакция электролиза)
Щелочи могут
быть также
получены взаимодействием щелочных и щелочноземельных металлов или их
оксидов с
водой:
2Li + 2H2O = 2LiOH + H2↑,
SrO + H2O = Sr(OH)2.
Химические
свойства оснований
1. Все
нерастворимые в
воде основания при нагревании разлагаются с образованием оксидов:
2Fe(OH)3
= Fe2O3 + 3H2O,
Ca(OH)2
= CaO + H2O.
2. Наиболее
характерной
реакцией оснований является их взаимодействие с кислотами –
реакция
нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:
NaOH + HNO3 = NaNO3 + H2O,
Cu(OH)2
+ H2SO4 = CuSO4
+ 2H2O.
3. Щелочи
взаимодействуют
с кислотными и с амфотерными оксидами:
2KOH
+ CO2 = K2CO3
+ H2O,
2NaOH
+ Al2O3 = 2NaAlO2
+ H2O.
4. Основания
могут
вступать в реакцию с кислыми солями:
2NaHSO3
+ 2KOH = Na2SO3 + K2SO3
+2H2O,
Ca(HCO3)2
+ Ba(OH)2 = BaCO3↓
+ CaCO3 + 2H2O.
Cu(OH)2
+ 2NaHSO4 = CuSO4 + Na2SO4
+2H2O.
5. Необходимо
особенно
подчеркнуть способность растворов щелочей реагировать с некоторыми
неметаллами
(галогенами, серой, белым фосфором, кремнием):
2NaOH + Cl2 = NaCl +NaOCl + H2O (на
холоду),
6KOH + 3Cl2 = 5KCl
+
KClO3 + 3H2O (при
нагревании),
6KOH
+ 3S = K2SO3 + 2K2S
+ 3H2O,
3KOH
+ 4P + 3H2O = PH3↑
+ 3KH2PO2,
2NaOH
+ Si + H2O = Na2SiO3
+ 2H2↑.
6. Кроме того,
концентрированные растворы щелочей при нагревании способны растворять
также и
некоторые металлы (те, соединения которых обладают амфотерными
свойствами):
2Al
+ 2NaOH + 6H2O = 2Na[Al(OH)4]
+ 3H2↑,
Zn
+ 2KOH + 2H2O = K2[Zn(OH)4]
+ H2↑.
Растворы щелочей
имеют рН
> 7 (щелочная среда), изменяют
окраску индикаторов
(лакмус – синяя, фенолфталеин – фиолетовая).
© М.В. Андрюxoва, Л.Н. Бopoдина
К следующему разделу
К оглавлению
Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса). Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты. Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:
H2SO4 + H2O ⇄ HSO4— + H3O+(катион гидроксония)
H2SO4 + CH3COOH ⇄ HSO4— + CH3COOH2+
Номенклатура оснований
Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.
KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)
Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4+.
Классификация оснований
Основания можно классифицировать по следующим признакам:
- По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
- По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
- По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
- По силе (по степени диссоциации) различают:
а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.
Сила оснований
Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода. Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:
Получение
Взаимодействие активного металла с водой:
2Na + 2H2O → 2NaOH + H2
Ca + 2H2O → Ca(OH)2 + H2
Mg + 2H2O Mg(OH)2 + H2
Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):
Na2O + H2O → 2NaOH,
CaO + H2O → Ca(OH)2.
Промышленным способом получения щелочей является электролиз растворов солей:
2NaCI + 4H2O 2NaOH + 2H2 + CI2
Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:
Na2SO4 + Ba(OH)2 → 2NaOH + BaSO4
MgSO4 + 2NaOH → Mg(OH)2 + Na2SO4.
Физические свойства
Все основания являются твердыми веществами, имеющими различную окраску. В воде нерастворимы, кроме щелочей.
Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При работе с ними следует соблюдать технику безопасности и пользоваться индивидуальными средствами защиты.
Химические свойства
Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид – ионов ОН—.
Изменение цвета индикаторов:
фенолфталеин – малиновый
лакмус – синий
метиловый оранжевый – желтый
Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):
2KOH + H2SO4 → K2SO4 + 2H2O,
растворимое
Mg(OH)2 + 2HCI → MgCI2 + 2H2O.
нерастворимое
Взаимодействие с кислотными оксидами:
2KOH + SO3 → K2SO4 + H2O
Взаимодействие с амфотерными оксидами и гидроксидами:
а) при плавлении:
2NaOH + AI2O3 → 2NaAIO2 + H2O,
NaOH + AI(OH)3 → NaAIO2 + 2H2O.
б) в растворе:
2NaOH + AI2O3 +3H2O → 2Na[AI(OH)4],
NaOH + AI(OH)3 → Na[AI(OH)4].
Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):
2NaOH + Zn + 2H2O → Na2[Zn(OH)4] + H2
2NaOH + Si + H2O → Na 2SiO3 + 2H2
Взаимодействие с растворимыми солями с образованием осадков:
2NaOH + CuSO4 → Cu(OH)2 + Na2SO4,
Ba(OH)2 + K2SO4 → BaSO4 + 2KOH.
Малорастворимые и нерастворимые основания разлагаются при нагревании:
Ca(OH)2 → CaO + H2O,
Cu(OH)2 → CuO + H2O.
Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?
1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.
2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.
Химические свойства оснований
Все основания подразделяют на:
Напомним, что бериллий и магний к щелочноземельным металлам не относятся.
Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.
Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.
Взаимодействие оснований с кислотами
Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:
Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:
Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:
Взаимодействие с кислотными оксидами
Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:
Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:
<.p>
Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:
Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O
С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:
Взаимодействие оснований с амфотерными оксидами и гидроксидами
Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:
Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:
В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:
Взаимодействие оснований с солями
Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:
1) растворимость исходных соединений;
2) наличие осадка или газа среди продуктов реакции
Например:
Термическая устойчивость оснований
Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.
Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:
Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:
Химические свойства амфотерных гидроксидов
Взаимодействие амфотерных гидроксидов с кислотами
Амфотерные гидроксиды реагируют с кислотами:
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:
Взаимодействие амфотерных гидроксидов с кислотными оксидами
Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.
Взаимодействие амфотерных гидроксидов с основаниями
Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:
А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:
Взаимодействие амфотерных гидроксидов с основными оксидами
Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:
Термическое разложение амфотерных гидроксидов
Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду: