Какие формы вещества содержатся в растворе слабого электролита
Untitled Document
Растворы слабых электролитов
Растворение некоторых веществ сопровождается высвобождением или образованием ионов. При этом возможны диссоциативный и ионизационный механизмы. Диссоциативный механизм превалирует при разрушении ионной кристаллической решетки под воздействием сольватирующего растворителя. Так, ионы, составляющие кристаллическую решетку KCl, приобретают способность проводить электрический ток в любом из двух случаев разрушения кристаллической решетки – под воздействием тепловой энергии (расплав) или под воздействием сольватирующего растворителя (растворение). В последнем случае в раствор переходят готовые ионы, окруженные молекулами растворителя. Процесс взаимодействия ионов кристаллической решетки с молекулами растворителя называется сольватацией.
Ионизационный механизм состоит в том, что в молекулах газообразных, твердых и жидких веществ под воздействием полярных молекул растворителя увеличивается доля ионности настолько, что в раствор могут переходить сольватированные ионы. В зависимости от природы растворителя электролит может быть полностью диссоциирован, либо будет вести себя как слабый электролит:
В воде равновесие смещено вправо и растворенный хлористый водород диссоциирован полностью. В бензоле растворенный HCl ведет себя как слабый электролит.
Важной характеристикой электролитов служит степень диссоциации α:
По величине степени диссоциации электролиты делятся на слабые и сильные. Для сильных электролитов, к которым относятся некоторые минеральные кислоты и щелочи, большинство солей, α > 30 %. К слабым относят некоторые минеральные кислоты (HNO 2, HCN, H 2SO 3), большинство оснований, практически все органические кислоты.
Модель 6.5. Реакция нейтрализации и электропроводность. |
Важнейшей характеристикой слабого электролита служит константа диссоциации .
Рассмотрим равновесную реакцию диссоциации слабого электролита HAn:
Константа равновесия K р этой реакции и есть K д:
Если выразить равновесные концентрации через концентрацию слабого электролита C и его степень диссоциации α, то получим
Это соотношение называют законом разбавления Оствальда . Для очень слабых электролитов при α
Тогда
Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.
Рассмотрим диссоциацию N моль электролита, диссоциирующего на n ионов. Тогда (6.1) можно записать в виде
Решая его относительно α, получим
Определив экспериментально изотонический коэффициент, можно найти степень диссоциации α в условиях эксперимента.
Модель 6.6. Реакции кислот и оснований. |
Кислоты и основания диссоциируют ступенчато. Каждая ступень диссоциации характеризуется своей константой. Так, трехосновная ортофосфорная кислота H 3PO 4 диссоциирует следующим образом
| ||||||||||||
Таблица 6.3. |
Важное значение имеет диссоциация воды, поскольку, являясь слабым электролитом и обычным растворителем, она участвует в кислотно-основном равновесии растворенных в ней электролитов.
Вода диссоциирует на ионы:
ее константа при 298 K равна
При столь малой константе диссоциации концентрация воды остается практически неизменной и равной
Отсюда произведение постоянных величин K д∙[H 2O] = [H +]∙[OH –] = const.
Численная величина произведения ионов, на которые диссоциирует вода, называемое ионным произведением воды K в , равна
Таким образом, в пределах 15–25 °C ионное произведение воды K в = 10 –14.
Равенство [H +] и [OH –] соответствует нейтральной среде [H +] = [OH –] = 1 ∙ 10 –7, при [H +] > 1 ∙ 10 –7 – кислой, при [H +]
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно заряженные ионы – катионы и анионы. Электролиты можно поделить на две группы: слабые и сильные.
Слабыми электролитами называют электролиты, диссоциирующие в растворах не полностью, т.е. не на сто процентов. В их растворах устанавливается равновесие между молекулами, которые подверглись диссоциации и продуктами их диссоциации – ионами. Для данной системы можно применить закон действующих масс. Для процесса диссоциации кислоты
НА D Н+ + А-
Константа равновесия КС в общем виде равна
, (7.21)
где аН+, аА-, аНА – активность ионов и кислоты (а = αС).
Константа равновесия для процесса диссоциации называется константой диссоциации КД. Например, константа диссоциации уксусной кислоты СН3СООН равна
СH3COOH D CH3COO- + H+
(7.22)
где в квадратных скобках указаны равновесные концентрации.
Для процесса диссоциации слабого основания
ROH D R+ + OH-
Константа диссоциации равна
, (7.23)
Например, константа диссоциации гидроксида аммония
NH4OH D NH4+ + OH-
равна
(7.24)
Для слабых электролитов константа диссоциации зависит от природы диссоциирующего вещества и растворителя, температуры, но не зависит от концентрации раствора. Кривая зависимости константы диссоциации многих электролитов от температуры проходит через максимум.
Константа диссоциации является характеристикой силы электролита. По величине константы диссоциации слабые электролиты делятся на умеренно слабые (КД = 10-2 – 10-4), слабые (КД = 10-5 – 10-9) и очень слабые (КД ≤ 10-10). Чем константа диссоциации соединения больше, тем сильнее данный электролит. Например, уксусная кислота (КД = 1,85.10-5) сильнее цианисто-водородной (КД = 4,8.10-10), но слабее муравьиной (КД = 1,8.10-4). Константа диссоциации имеет постоянное значение (при данной температуре) только для слабых электролитов. Подобного постоянства для сильных электролитов не наблюдается.
Для многоосновных слабых электролитов константа диссоциации расписывается для каждой ступени диссоциации. Например, для ортофосфорной кислоты (Н3РО4) константа диссоциации по первой ступени КД1 = 7,51 .10-3, по второй ступени КД2 = 6,23 .10-8 и по третьей КД3 = 2,2.10-13.
Для расчетов удобно пользоваться не константой диссоциации КД, а показателем константы диссоциациирК, который представляет собой отрицательный десятичный логарифм КД:
рК = -lgКД (7.25)
Основываясь на законе действующих масс, можно вывести уравнение, которое связывает константу диссоциации КД электролита со степенью его диссоциации (α) и с концентрацией раствора (С). В случае электролита КА, диссоциирующего на ионы К+ и А-. Концентрации ионов (активности), рассчитывают по уравнению (7.18), а концентрация вещества КА равна аКА = (1 – α)С. Подставляя эти значения в уравнение (7.21), получим:
(7.26)
где С – молярная концентрация электролита, моль/дм³.
Выведенная формула (7.26) является аналитическим выражением закона разбавления Оствальда.
Если степень диссоциации значительно меньше единицы, то при приближенных вычислениях можно принять, что (1-α) » 1. Тогда выражение закона разбавления упрощается:
КД = α2С, откуда . (7.27)
Последнее соотношение показывает, что при разбавлении раствора (т. е. при уменьшении концентрации электролита С) степень диссоциации электролита возрастает. Опыт показывает, что для сильных растворов закон разведения Оствальда не применим, так как для них величина КД с увеличением концентрации непрерывно возрастает.
Рассмотрим ионное произведение воды. Химически чистая вода является очень слабым электролитом, который при диссоциации образует ионы водорода (Н+) и гидроксид-ионы (ОН-):
Н2О D Н+ + ОН-.
Этому процессу соответствует константа диссоциации
. (7.28)
Поскольку степень диссоциации воды мала, то активность ионов в уравнении (7.28) могут быть заменены их концентрациями, а концентрацию не распавшихся ионов можно считать равной общей концентрации молекул воды и считать ее постоянной величиной. Поэтому уравнение (7.28) можно записать в виде:
КД[Н2О] = [H+][OH-] = КW (7.29)
где КW – ионное произведение воды. При 295 К КW = 10-14, поэтому [H+] = [OH-] = 10-7 моль/дм³. С увеличением температуры КW увеличивается. Если прологарифмировать уравнение (7.29) и умножить на -1, то получим
-рКW = рН + рОН = 14. (7.30)
где рКW – показатель ионного произведения воды; рН – водородный показатель или кислотность раствора; рОН – показатель гидроксид-ионов.
Величина рН используется для определения характера реакции раствора. Если рН = 7, то реакция нейтральная; если рН < 7, то реакция среды кислая; если рН > 7, то реакция щелочная.
Величина рН может служить критерием силы кислоты или основания. В ряду кислот более сильной будет та, у которой при одинаковой молярной концентрации активность ионов Н+ выше (рН ниже). Для оснований подобная зависимость имеет обратный характер.
Рассмотрим произведение растворимости соединений. В насыщенном растворе малорастворимого электролита устанавливается равновесие между осадком (твердой фазой) электролита и ионами электролита в растворе, например:
ВаSO4 D Ва+2 + SO4-2
в осадке в растворе
Поскольку в растворах электролитов состояние ионов определяется их активностями, то константа равновесия последнего процесса имеет вид:
(7.31)
Активность твердого сульфата бария есть величина постоянная, а, следовательно, произведение КДаВаSO4 тоже является при данной температуре константой. Отсюда следует, что произведение активностей ионов Ва+2 и SO4-2 так же представляет собой постоянную величину, называемую произведением растворимости (ПР):
а(Ва+2)а(SO4-2) = ПР(ВаSO4) = 1,08.10-10 (7.32)
Произведение активностей ионов малорастворимого электролита содержащихся в его насыщенном растворе (произведение растворимости) есть величина постоянная при данной температуре – это правило произведения растворимости.
Если электролит очень мало растворим, то ионная сила его насыщенного раствора близка к нулю, а коэффициенты активности ионов мало отличаются от единицы. В подобных случаях произведение активностей ионов в уравнении (7.32) можно заменить произведением их концентраций:
ПРВаSO4 = [Ba+2][SO4-2] (7.33)
Если какой-либо трудно растворимый электролит диссоциирует с образованием нескольких одинаковых ионов (например, КnАm D nК+m + mА-n), то уравнение для ПР примет вид:
ПР(КnАm) = (а(К+m))n (а(А-n))m. (7.34)
С учетом того, что а = gС (g – коэффициент активности):
ПР(КnАm) = (nСg(К+m))n(mСg(А-n))m. (7.35)
При увеличении концентрации одного из ионов электролита в его насыщенном растворе (например, путем введения другого электролита, содержащего тот же ион) произведение концентраций ионов электролита станет больше ПР. При этом равновесие между твердой средой и раствором смещается в сторону образования осадка. Таким образом, условием образования осадка является концентрация ионов малорастворимого электролита над его произведением растворимости (аК+аА > ПР). В результате осадка концентрация другого иона, входящего в состав электролита, тоже изменяется. Устанавливается новое равновесие, при котором произведение концентраций ионов электролита вновь становится равным ПР.
Напротив, если в насыщенном растворе электролита уменьшить концентрацию одного из ионов (например, связав его каким-либо ионом), произведение концентраций ионов будет меньше значения ПР, раствор станет ненасыщенным, а его равновесие между жидкой фазой и осадком сместится в сторону растворения осадка. Следовательно, равновесие осадка малорастворимого электролита происходит при условии, что произведение концентраций ионов меньше значения ПР (аК+аА < ПР).
Например, введение в раствор малорастворимой соли сульфата бария (ПР =1,08.10-10) хорошо растворимой соли хлорида бария (ВаСl2) сдвигает равновесие в сторону образования осадка, а введение сульфата калия (К2SO4) в сторону растворения осадка.
Исходя из значений ПР, можно вычислить растворимость малорастворимых электролитов в воде и растворах, содержащих другие электролиты. Значения ПР для большинства электролитов – табличные величины (табл. 5).
Закон действующих масс применяют также при рассмотрении равновесий с участием комплексных ионов и при гидролизе солей (речь об этом пойдет в следующей теме при рассмотрении реакций обмена).
Таблица 7.5
Произведение растворимости (ПР) и растворимость
при 25°С некоторых малорастворимых веществ
Формула | Растворимость | ПР, моль/дм3 |
AgBr | 7,94 • 10 -7 | 6,3 • 10 -13 |
AgCl | 1,25 • 10 -5 | 1,56 • 10 -10 |
AgI | 1,23 • 10 -8 | 1,5 • 10 -16 |
Ag2CrO4 | 1,0 • 10 -4 | 4,05 • 10 -12 |
BaSO4 | 7,94 • 10 -7 | 6,3 • 10 -13 |
CaCO3 | 6,9 • 10 -5 | 4,8 • 10 -9 |
PbCl2 | 1,02 • 10 -2 | 1,7 • 10 -5 |
PbSO4 | 1,5 • 10 -4 | 2,2 • 10 -8 |
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 марта 2020;
проверки требуют 7 правок.
У этого термина существуют и другие значения, см. Диссоциация.
Электролитическая диссоциация — это процесс распада молекул на ионы при его растворении или плавлении.
Диссоциация в растворах[править | править код]
Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость.
Диссоциация при плавлении[править | править код]
Под действием высоких температур ионы кристаллической решётки начинают совершать колебания, кинетическая энергия повышается, и наступит такой момент (при температуре плавления вещества), когда она превысит энергию взаимодействия ионов. Результатом этого является распад вещества на ионы.
Классическая теория электролитической диссоциации[править | править код]
Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский в 1891 году применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.
Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, то есть долей распавшихся молекул электролита. Динамический прогресс между недиссоциированными молекулами и ионами описывается законом действующих масс. Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:
Константа диссоциации определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:
Значение зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:
,
где — средний коэффициент активности электролита.
Слабые электролиты[править | править код]
Слабые электролиты — химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.
Слабые электролиты
- почти все органические кислоты и вода;
- некоторые неорганические кислоты: HF, HClO, HClO2, HNO2, HCN, H2S, HBrO, H2CO3, H2SiO3, H2SO3 и др.;
- некоторые малорастворимые гидроксиды металлов: Fe(OH)3, Zn(OH)2 и др.
Сильные электролиты[править | править код]
Сильные электролиты — химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированны на ионы. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли, некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (амиды и кислоты др.).
Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20—30-х гг. XX в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории электролитической диссоциации, константой диссоциации (или обратной величиной — константой ассоциации). Это позволяет использовать вышеприведённое уравнение для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.
В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде — растворителе.
Примеры сильных электролитов: некоторые кислоты (HClO4, HMnO4, H2SO4, HCl, HBr; HI), гидроксиды щелочных и щёлочноземельных металлов (NaOH, KOH, Ba(OH)2); большинство солей.
См. также[править | править код]
- Сольватация
- Закон разбавления Оствальда
Литература[править | править код]
- Кистяковский В. А.,. Электролитическая диссоциация // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
Ссылки[править | править код]
- Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Лекции по физической и коллоидной химии: Растворы электролитов.