Какие физиологические свойства мышц изучают с помощью электромиографии
Электромиография
– регистрация электрических потенциалов
скелетных мышц. Ее используют как метод
исследования нормальной и нарушенной
функции двигательного аппарата человека
и животных. Электромиография включает
методики по изучению электрической
активности мышц в состоянии покоя, при
произвольных, непроизвольных и вызванных
искусственными раздражениями сокращениях.
С помощью
электромиографии изучают функциональное
состояние и функциональные особенности
мышечных волокон, двигательных единиц,
нервно-мышечной передачи, нервных
стволов, сегментарного аппарата спинного
мозга, изучают координацию движений,
выработку двигательного навыка при
различных видах работы и спортивных
упражнениях, при утомлении.
Электромиограмма
(ЭМГ) –кривая, получаемая на бумаге
при регистрации электрических потенциалов
скелетных мышц. На ней определяют форму,
длительность и амплитуду потенциала.
При слабом
сокращении мышц регистрируются или
потенциалы отдельной двигательной
единицы или потенциал многих двигательных
единиц. При среднем по силе и сильном
сокращениях регистрируется интерференционная
ЭМГ, в которой практически невозможно
выделить потенциалы отдельных двигательных
единиц.
У здоровых людей в
хорошо расслабленных мышцах или не
выявляется никаких колебаний потенциала,
или выявляются низкоамплитудные
колебания. При слабом сокращении
регистрируются более редкие и неравномерные
по амплитуде колебания потенциала, при
сильном сокращении возрастают частота
и амплитуда колебаний. Частота колебаний
может быть разной в различных мышцах,
а также в одних и тех же группах мышц у
различных испытуемых. В среднем частота
колебаний составляет 100 Гц. Амплитуда
колебаний зависит от многих условий –
развития мышц, их состояния, выраженности
подкожного жирового слоя. В норме при
максимальном по силе сокращении амплитуда
может достигать 300-1200 мкВ.
250мс
б
Рис.
3. «Частокольная” форма ЭМГ в круговой
мышце глаза при его зажмуривании у
больного с парезом лицевого нерва после
перенесенного полиомиелита:а
— ЭМГ
здоровой стороны;
6 — ЭМГ
пораженной стороны.
В стоматологической практикерегистрируютинтерференционную ЭМГ
(через кожу, применяя электроды большой
площади),локальнуюЭМГ (от отдельной
двигательной единицы, применяя игольчатые
электорды) истимуляционную ЭМГ
(регистрация потенциалов сокращающейся
мышцы при раздражении её или нерва
электрическим током). Анализируя ЭМГ
изучают амплитуду, частоту и
продолжительность электрической
активности. Например, в норме потенциалы
действия двигательных единиц жевательных
мышц имеют продолжительность 9-10 мс,
мимических – 5-7 мс. Амплитуда потенциалов
не превышает 300 мкВ.
В норме
наблюдается симметричная активность
мышц и четкая смена фаз биоэлектрической
активности мышц и периодов покоя. А при
утрате, например, зубов с одной стороны,
биоэлектрическая активность жевательных
мышц на этой стороне резко падает. При
значительной потере зубов возникает
ослабление биотоков жевательных мышц.
Тема: Физиологические свойства скелетных мышц.
Скелетные
мышцы обладают возбудимостью,
проводимостью, лабильностью, сократимостью,
эластичностью.
В зависимости от частоты раздражителямогут быть одиночные и тетанические
сокращения мышцы. При раздражении мышцы
одиночным стимулом возникаетодиночное
мышечное сокращение. В нем различаютлатентный период (от начала раздражения
до начала ответной реакции), периодукорочения (собственно сокращение)
и периодрасслабления.Длительность
одиночного сокращения от нескольких
сотых секунды до 0,1-0,2 сек. Это значит,
что одиночные сокращения мышцы будут
при частоте импульсов менее 10 Гц. В таком
режиме мышца способна работать длительное
время без утомления. Однако развиваемое
мышечное напряжение не достигает
максимально возможных величин.
В ответ на
более частое ритмическое раздражение
(а именно такое получают наши мышцы)
мышца длительно сокращается. Такое
сокращение получило название тетаническое.Если каждый последующий импульс подходит
к мышце в период, когда она начала
расслабляться, возникаетзубчатый
тетанус.Если интервал между
раздражениями уменьшается так, что
каждый последующий импульс приходит к
мышце, в тот момент, когда она находится
в фазе сокращения, возникаетгладкий
тетанус.
Механизм
образования тетануса объясняется
суперпозицией и изменением возбудимости
в процессе возбуждения. Раздражители,
вызывающие тетанус, застают мышцу в
фазу медленной деполяризации. Начало
же быстрой деполяризации приводит к
тому, что ткань теряет способность
реагировать на раздражение. Эта фаза
называетсяабсолютной рефрактерностью
(невозбудимостью). Во время реполяризации
возбудимость восстанавливается. Этот
период называетсяотносительной
рефрактерностью. Возбудимость в этот
момент ниже исходной величины, во время
же следовой реполяризации она возрастает
и становится выше исходной. Эта фаза
называетсяэкзальтацией (повышенной
возбудимости). Именно в этот момент и
действуют раздражители, вызывающие
тетанус.
В зависимости от нагрузкиразличают
следующие типы мышечного сокращения:
— изотонический
– это сокращение мышцы, при котором
ее волокна укорачиваются при постоянной
внешней нагрузке;
— изометрический
— это тип активации мышцы, при котором
она развивает напряжение без изменения
длины (лежит в основестатической работы);
— ауксотонический
–это режим, в котором мышцы развивают
напряжение и укорачиваются (лежит в
основединамическойработы).
Сила мышц – это наибольшая величина
груза, который она может поднять.
Абсолютная сила мышц –это максимальный
груз, который мышца поднимает на 1 см
поперечного физиологического сечения.
Относительная сила мышц –это
способность мышцы к подъему груза на
единицу анатомического сечения мышцы.
КПД (коэффициент полезного действия)
всех мышц человека равен 15-25%, у
тренированных он выше – до 35%.
Закон средних нагрузок – мышца
длительно и эффективно работает при
средних нагрузках (оптимальном режим
сокращения).
Рабочая гипертрофия – увеличение
массы мускулатуры при длительных
физических нагрузках (при гиподинамии
наступает атрофия мышц).
Усталость – субъективное состояние,
когда к нему присоединяются объективные
признаки (падение силы, выносливости,
скорости движений) и развиваетсяутомление.
В стоматологической практике определяют
силу жевательных мышц. Сумма поперечного
сечения жевательных мышц, поднимающих
нижнюю челюсть на одной стороне лица
равна 19,5 см2, а на обеих сторонах
– 39 см2. Следовательно, абсолютная
сила жевательных мышц равна – 390 кг. При
развитии утомления жевательных мышц
может наступить их замедленное
расслабление –контракутура жевательных
мышц.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Электромиография — это метод изучения биоэлектрических процессов, развивающихся в мышцах людей и животных во время различных двигательных реакций. Метод основан на записи биопотенциалов скелетных мышц. Запись колебаний мышечных потенциалов (рис.) производится специальными приборами — электромиографами различных типов.
Хотя электромиограммы отражают только колебания потенциалов, которые развиваются непосредственно в мышце, все же по их качественным и количественным особенностям можно судить также о нормальном или патологическом состоянии ЦНС, регулирующей все виды двигательной активности человека. При различных заболеваниях возникают разнообразные нарушения нормальной картины электромиограммы (рис.).
Электромиограмма при сокращении общих разгибателей пальцев: А — в норме; Б — при тяжелом парезе мышц после полиомиелита; В — при паркинсоническом дрожании и ригидном повышении тонуса.
При миогенных нарушениях (миозиты, миопатии) отмечаются асинхронные колебания с высокой частотой, укорочение длительности колебаний. В случаях далеко зашедших миогенных атрофии имеется снижение амплитуды колебаний.
При денервации мышцы появляются патологические виды колебаний:
низковольтные (чаще двух- и трехфазные) потенциалы фибрилляций.
При сегментарных ядерных парезах и амиотрофиях (поражение двигательных клеток ствола головного и спинного мозга) наблюдается снижение электрической активности, иногда до «биоэлектрического молчания», появление редких колебаний потенциалов фибрилляций.
При надсегментарных расстройствах (центральные параличи, гиперкинезы) выявляется снижение амплитуды колебаний в ЭМГ пораженных мышц, асинхронность возбуждения двигательных клеток и мышечных волокон.
Сопоставление электромиографических и клинических данных позволяет уточнить место (локализацию) и тяжесть повреждения нервной системы и мышц. Сравнение повторно записанных в одной и той же мышце электромиограмм помогает обнаружить улучшение (при выздоровлении) ее функционального состояния или ухудшение (при прогрессирующем заболевании), а также служит одним из оснований для объективной оценки результатов проводимого лечения.
Электромиографические данные могут оказать существенную помощь при диагностике ранних стадий заболевания и при легких повреждениях нейромоторной системы: возникающие в таких случаях двигательные расстройства иногда бывают столь незначительны, что клиническое обследование их еще не обнаруживает, тогда как электромиограммы, зарегистрированные высокочувствительным аппаратом, уже отражают патологически измененную электрическую активность мышц.
Электромиографию широко используют не только в неврологической клинике, но и при других заболеваниях человека (сердечно-сосудистых, онкологических, инфекционных и др.).
Электромиография (от греч. mys, myos — мышца, grapho — записываю) — регистрация электрических потенциалов; скелетных мышц. Электромиографию используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях.
С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, а также надсегментарных структур; изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, перестройку работы пересаженных мышц, утомление. На основании электромиографии создан метод управления биотоками мышц, который нашел практическое применение при управлении так называемыми биоэлектрическими протезами (см. Протезирование).
Электромиограмма — кривая, получаемая на фотобумаге, фотопленке или на бумаге при регистрации электрических потенциалов скелетных мышц. Она может быть записана с помощью специального прибора, получившего название электромиограф, или других приборов, используемых для регистрации биопотенциалов. Прибор, как правило, имеет не менее двух каналов записи. Каждый канал включает в себя отводящие электроды, усилитель биопотенциалов и регистрирующее устройство. В большинство электромиографов предусматривается устройство для зрительного и слухового контроля (рис. 1).
Рис. 1. Схема устройства прибора для электромиографии.
Основным источником колебаний электрического потенциала мышц является распространяющийся по мышечным волокнам процесс возбуждения. Однако, поскольку электромиограмма регистрируется в области двигательных точек (см. Электродиагностика), часть электрического потенциала составляет потенциал, возникающий при возбуждении концевых пластин. Электрические потенциалы скелетных мышц можно отводить внутриклеточно или внеклеточно.
Внутриклеточное отведение электрических потенциалов отдельных мышечных волокон у человека позволяет определять те характеристики, которые раньше изучались при микроэлектродных исследованиях на животных или препаратах: величины мембранных потенциалов мышечных волокон, деполяризацию и гиперполяризацию мембран и т. п. (см. Биоэлектрические явления). Регистрацию внутриклеточных потенциалов скелетных мышц ряд авторов называет внутриклеточной электромиографией.
Внеклеточное отведение электрических потенциалов проводят двумя методами:
1) при помощи электродов с относительно малой отводящей поверхностью (сотые доли квадратного миллиметра), погружаемых в мышцу посредством игл (рис. 2, 1—3); при этом во всех случаях, кроме униполярного отведения, оба отводящих электрода находятся на небольшом расстоянии друг от друга (как правило, менее 0,5 мм); 2) при помощи электродов с относительно большой отводящей поверхностью (30— 100 мм2), обычно помещенных на кожу над мышцей на сравнительно большом расстоянии друг от друга (1—2 см) (рис. 2, 4—6). В первом случае принято говорить о «локальном», во втором — о «глобальном» отведении. «Локальное» отведение позволяет изучать электрические потенциалы, возникающие в небольшом объеме мышечной ткани: потенциалы отдельных двигательных единиц, суммарные потенциалы небольшого количества двигательных единиц, в условиях патологии — потенциалы отдельных мышечных волокон. Основным объектом изучения является двигательная единица. Это понятие первоначально означало совокупность мышечных волокон, иннервируемых одним мотоневроном.
Рис. 2. Игольчатые и накожные электроды для регистрации электромиограмм: 1 — концентрический; 2 — биполярный; 3 — мультиэлектрод (по Бухталу); 4 — 6 — накожные электроды различных типов.
Рис. 3. Колебания потенциала мышцы при «локальном» отведении:1 — потенциал двигательной единицы; 2 — потенциал мышечного волокна (потенциал фибрилляции); 3 — положительный денервационный потенциал; 4 и 5— полифазные потенциалы (по Бухталу); в — ритмические разряды двух двигательных единиц.
В настоящее время многие авторы под двигательной единицей понимают совокупность функционально объединенных мышечных волокон, работающих как единое целое. Почти одновременное возникновение возбуждения в мышечных волокнах двигательной единицы приводит к тому, что возникают колебания потенциала, отражающие возбуждение двигательной единицы в целом (потенциалы двигательной единицы). Для исследования потенциалов двигательных единиц обычно используют концентрический электрод (рис. 2, 1). Биполярные электроды (рис. 2, 2) значительно искажают начальную и конечную часть потенциала двигательной единицы.
При «локальном» отведении учитывают форму, длительность и амплитуду потенциала отдельной двигательной единицы и тип электромиограммы (рис. 3). Форма потенциала двигательной единицы двухфазная или трехфазная с преимущественно выраженной отрицательной фазой; примерно в 3% случаев встречаются полифазные потенциалы. Длительность потенциала двигательных единиц зависит от их структуры. Она, как правило, больше в мышцах с крупными двигательными единицами и меньше в мышцах с мелкими двигательными единицами. Например, в четырехглавой мышце бедра и передней большеберцовой мышце, где имеются крупные двигательные единицы, включающие до 1500—2000, а иногда и более мышечных волокон, средняя длительность потенциала двигательной единицы у взрослых составляет 10—15 мсек, а в мышцах глаза, двигательные единицы которых имеют 5—10 мышечных волокон,— всего 1 — 3 мсек. Длительность потенциала двигательной единицы увеличивается с возрастом, например в возрасте 10 лет для передней большеберцовой мышцы она равна 9,7 мсек, 30 лет — 12,3 мсек, 60 лет — 15,2 мсек. Амплитуда колебаний потенциала двигательной единицы зависит от большего или меньшего удаления электрода от активных мышечных волокон и может достигать 3—5 мВ, однако средние величины значительно меньше — порядка 200 мкв. В расслабленной мышце биопотенциалы не регистрируются. При слабом сокращении мышцы потенциалы двигательной единицы следуют друг за другом в виде не строго ритмического ряда примерно одинаковых по амплитуде колебаний. Для мышц конечностей количество разрядов двигательных единиц в одну секунду принимается равным 5—10 при слабом сокращении, 20—30 при среднем по силе сокращении и 50—60 при сильном сокращении. Частота разрядов двигательных единиц в мелких мышцах обычно выше, чем в крупных (в мышцах глаза достигает 150—200 в 1 сек).
Увеличение силы сокращения мышц происходит как за счет увеличения частоты повторных возбуждений отдельных двигательных единиц, так и за счет вовлечения в работу новых двигательных единиц. Соответственно меняется тип «локально» отведенной электромиограммы. Различают три основных ее типа: потенциалы отдельной двигательной единицы, смешанный и интерференционный. При слабом сокращении регистрируются или потенциалы отдельной двигательной единицы (1-й тип), или потенциалы многих двигательных единиц, среди которых обычно можно выделить потенциалы отдельной двигательной единицы (2-й тип). При среднем по силе и сильном сокращениях регистрируется интерференционная электромиограмма, в которой практически невозможно выделить потенциалы отдельных двигательных единиц (3-й тип). О синхронности разрядов двигательных единиц наиболее точно получают сведения, используя мультиэлектроды. По данным «локального» отведения, степень синхронизации разрядов двигательных единиц при слабых сокращениях мышц у здоровых незначительна; она стойко повышается при некоторых поражениях спинного мозга (см. ниже электромиография в клинике). Данные «глобального» отведения, позволяющего изучать электромиограмму при длительных и максимальных по силе сокращениях мышц, говорят о значительном повышении у здоровых синхронизации разрядов двигательных единиц при утомлении и некоторых режимах работы мышц.
Потенциалы отдельных мышечных волокон можно зарегистрировать только при денервации мышцы, когда двигательные единицы перестают существовать как функциональное целое и отдельные мышечные волокна начинают «спонтанно» возбуждаться. Это так называемые потенциалы фибрилляций, которые имеют длительность 0,5 — 3 мсек и амплитуду 50—200 мкв.
«Глобальное» отведение позволяет изучать колебания электрических потенциалов, возникающих в большом объеме мышечной ткани, содержащей обычно сотни двигательных единиц. Как правило, эти потенциалы отражают сумму потенциалов многих двигательных единиц; поэтому электромиограмму при «глобальном» отведении часто называют суммарной, хотя при некоторых обстоятельствах при «глобальном» отведении могут регистрироваться и потенциалы отдельных двигательных единиц. Для «глобального» отведения, помимо накожных электродов, можно применять обычные иглы; в условиях эксперимента используют вживленные электроды в виде серебряных пластинок, подшитых к мышце. В большинстве случаев применяют биполярное или униполярное отведение накожными электродами. Униполярный способ отведения оправдывает себя в физиологии спорта. В клинике в настоящее время используют почти исключительно биполярное отведение. При нем отводящие электроды располагаются на расстоянии 1—2 см друг от друга так, чтобы один находился над двигательной точкой, а другой — дистальнее или оба над двигательной точкой. Обычно отводящие электроды постоянно фиксированы на изолирующей пластинке. В соответствии с запросами клинической электромиографии разработана специальная схема обследования здоровых испытуемых и больных (Ю. С. Юсевич). Эта схема предусматривает обязательную регистрацию биопотенциалов симметричных мышц в покое, т. е. во время максимального произвольного расслабления мышц, при различных пробах, ведущих к непроизвольному изменению напряжения мышц, и при произвольных их сокращениях. У здоровых испытуемых в хорошо расслабленных мышцах или не выявляется никаких колебаний потенциала, или выявляются низкоамплитудные колебания, которые рядом авторов считаются проявлением тонуса мышцы. При позно-тонических и произвольных сокращениях мышц электромиограмма представлена нерегулярными колебаниями различной амплитуды, формы и длительности. При слабом сокращении регистрируются более редкие и неравномерные по амплитуде колебания потенциала, при сильном сокращении возрастают частота следования и амплитуда колебаний. Увеличение амплитуды колебаний при увеличении статического напряжения показано на рис. 4. Частота следования колебаний может быть разной в различных мышцах, а также в одних и тех же мышечных группах у разных испытуемых. В среднем частота следования колебаний при максимальном по силе сокращении составляет 100—150 в 1 сек. Амплитуда колебаний зависит от многих условий: развития мышц, их состояния, выраженности подкожного жирового слоя (особенно при выраженных случаях ожирения) и в большой степени от выбора электродов. Амплитуда колебаний при максимальном по силе сокращении может достигать 4—6 мВ. Однако обычно регистрируются меньшие величины (рис. 5). Частота следования колебаний потенциала и амплитуда колебаний изменяются при изменении синхронизации разрядов двигательных единиц. Увеличение синхронизации при утомлении и некоторых режимах работы мышц ведет к уменьшению частоты следования колебаний и увеличению амплитуды.
Рис. 4. Электромиограмма двуглавой мышцы плеча при статическом напряжении различной силы (разная нагрузка).
Рис. 5. Электромиограммы, записанные при максимальном по силе сокращении правого (верхняя кривая) и левого (нижняя кривая) поверхностного сгибателя пальцев (биполярное отведение накожными электродами площадью 0,5 см2 с расстоянием между центрами электродов 20 мм).
Большое количество ценных сведений о состоянии различных звеньев двигательного аппарата позволяет получить регистрация биопотенциалов мышцы при электрическом раздражении нервных стволов и мышечных волокон. Регистрация электромиограммы при раздражении мышечных волокон электрическим током позволила определить в норме и патологии скорость распространения возбуждения по мышечным волокнам, а при раздражении нервных стволов — состояние нервно-мышечной передачи, скорость распространения возбуждения по двигательным нервным волокнам, а также изучить моно- и полисинаптические рефлексы.
Помимо общей визуальной оценки, применяется и математическая обработка электромиограмм. Более широкое распространение получила оценка общей площади электромиограммы за единицу времени при помощи интеграторов и машинная обработка для проведения аутокорреляционного и особенно кросскорреляционного анализа.
- Электромиография в клинике