Какие физические свойства металлов обусловлены металлической связью

Какие физические свойства металлов обусловлены металлической связью thumbnail

Металли́ческая связь — химическая связь между атомами в металлическом кристалле, возникающая за счёт перекрытия (обобществления) их валентных электронов. Металлическая связь описывается многими физическими свойствами металлов, такими как прочность, пластичность, теплопроводность, удельное электрическое сопротивление и проводимость, непрозрачность и блеск[1][2][3][4].

Механизм металлической связи[править | править код]

В узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся электроны проводимости, происходящие из атомов металлов при образовании ионов. Эти электроны играют роль «цемента», удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Когда металл принимает какую-либо форму или растягивается, он не разрушается, потому что ионы в его кристаллической структуре довольно легко смещаются относительно друг друга[5]. Силы связи не локализованы и не направлены. В металлах в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).

Рис. 1. Расположение ионов в кристалле щелочного металла

Так, щелочные металлы кристаллизуются в кубической объёмно-центрированной решётке, и каждый положительно заряженный ион щелочного металла имеет в кристалле по восемь ближайших соседей — положительно заряженных ионов щелочного металла (рис. 1). Кулоновское отталкивание одноимённо заряженных частиц (ионов) компенсируется электростатическим притяжением к электронам связывающих звеньев, имеющих форму искажённого сплющенного октаэдра — квадратной бипирамиды, высота которой и рёбра базиса равны величине постоянной решётки aw кристалла щелочного металла (рис. 2).

Связывающие электроны становятся общими для системы из шести положительных ионов щелочных металлов и удерживают последние от кулоновского отталкивания.

Величина постоянной трансляционной решётки aw кристалла щелочного металла значительно превышает длину ковалентной связи молекулы щелочного металла, поэтому принято считать, что электроны в металле находятся в свободном состоянии:

Щелочной металлLiNaKRbCs
Постоянная решётки aw, Å[6]3,5024,2825,2475,6906,084
Длина ковалентной связи для Me2, Å[7]2,673,083,924,104,30

Математическое построение, связанное со свойствами свободных электронов в металле, обычно отождествляют с «поверхностью Ферми», которую следует рассматривать как геометрическое место в k-пространстве, где пребывают электроны, обеспечивая основное свойство металла — проводить электрический ток[8]. Таким образом, электрический ток в металлах — это движение сорванных с орбитального радиуса электронов в поле положительно заряженных ионов, находящихся в узлах кристаллической решётки металла. Выход и вход свободных электронов в связывающее звено кристалла осуществляется через точки «0», равноудалённые от положительных ионов атомов (рис. 2).

Свободное движение электронов в металле подтверждено в 1916 году опытом Толмена и Стюарта по резкому торможению быстро вращающейся катушки с проводом — свободные электроны продолжали двигаться по инерции, в результате чего гальванометр регистрировал импульс электрического тока. Свободное движение электронов в металле обусловливает высокую теплопроводность металла и склонность металлов к термоэлектронной эмиссии, происходящей при умеренной температуре.

Колебание ионов кристаллической решётки создаёт сопротивление движению электронов по металлу, сопровождающееся разогревом металла. В настоящее время важнейшим признаком металлов считается положительный температурный коэффициент электрической проводимости, то есть понижение проводимости с ростом температуры. С понижением температуры электросопротивление металлов уменьшается, вследствие уменьшения колебаний ионов в кристаллической решётке. В процессе исследования свойств материи при низких температурах Камерлинг-Оннес открывает явление сверхпроводимости. В 1911 году ему удаётся обнаружить уменьшение электросопротивления ртути при температуре кипения жидкого гелия (4,2 К) до нуля. В 1913 году Камерлинг-Оннесу присуждается Нобелевская премия по физике со следующей формулировкой: «За исследование свойств веществ при низких температурах, которые привели к производству жидкого гелия».

Однако теория сверхпроводимости была создана позднее. В её основе лежит концепция куперовской электронной пары — коррелированного состояния связывающих электронов с противоположными спинамии и импульсами, и, следовательно, сверхпроводимость можно рассматривать как сверхтекучесть электронного газа, состоящего из куперовских пар электронов, через ионную кристаллическую решётку. В 1972 году авторам теории БКШ — Бардину, Куперу и Шрифферу присуждена Нобелевская премия по физике «За создание теории сверхпроводимости, обычно называемой БКШ-теорией».

Характерные кристаллические решётки[править | править код]

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt, Rh, γ-Fe, Cu, α-Co и др.

Читайте также:  Животные жиры какие полезные свойства

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства[править | править код]

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Многие металлы обладают высокой твёрдостью, например хром, молибден, тантал, вольфрам и др. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

Примечания[править | править код]

Источник

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

Механизм металлической связи

Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.

Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой – металлической связью.

Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.

Источник

Физические свойства металлов отличают их от неметаллов. Все металлы, кроме ртути, – твёрдые кристаллические вещества, являющиеся восстановителями в окислительно-восстановительных реакциях.

Какие физические свойства металлов обусловлены металлической связью

Положение в таблице Менделеева

Металлы занимают I-II группы и побочные подгруппы III-VIII групп. Металлические свойства, т.е. способность отдавать валентные электроны или окисляться, увеличиваются сверху вниз по мере увеличения количества энергетических уровней. Слева направо металлические свойства ослабевают, поэтому наиболее активные металлы находятся в I-II группах, главных подгруппах. Это щелочные и щелочноземельные металлы.

Определить степень активности металлов можно по электрохимическому ряду напряжений. Металлы, стоящие до водорода, наиболее активны. После водорода стоят слабоактивные металлы, не вступающие в реакцию с большинством веществ.

Читайте также:  Какими свойствами обладает цикорий

Электрохимический ряд напряжений металлов

Рис. 1. Электрохимический ряд напряжений металлов.

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.

Виды кристаллических решёток

Рис. 2. Виды кристаллических решёток.

Свойства

Строение кристаллической решётки определяет основные физические и химические свойства металлов. Металлы блестят, плавятся, проводят тепло и электричество. Промышленность и металлургия нашли применение физическим свойствам металлов в изготовлении деталей, фольги, корпусов машин, зеркал, бытовой и промышленной химии. Особенности металлов и их использование представлены в таблице физических свойств металлов.

Свойства

Особенности

Примеры

Применение

Металлический блеск

Способность отражать солнечный свет

Наиболее блестящими металлами являются Hg, Ag, Pd

Изготовление зеркал

Плотность

Лёгкие – имеют плотность меньше 5 г/см3

Na, K, Ba, Mg, Al. Самый лёгкий металл – литий с плотностью 0,533 г/см3

Изготовление облицовки, деталей самолётов

Тяжёлые – имеют плотность больше 5 г/см3

Sn, Fe, Zn, Au, Pb, Hg. Самый тяжёлый – осмий с плотностью 22,5 г/см3

Использование в сплавах

Пластичность

Способность изменять форму без разрушений (можно раскатать в тонкую фольгу)

Наиболее пластичные – Au, Cu, Ag. Хрупкие – Zn, Sn, Bi, Mn

Формовка, сгибание труб, изготовление проволоки

Твёрдость

Мягкие – режутся ножом

Na, K, In

Изготовление мыла, стекла, удобрений

Твёрдые – сравнимы по твёрдости с алмазом

Самый твёрдый – хром, режет стекло

Изготовление несущих конструкций

Температура плавления

Легкоплавкие – температура плавления ниже 1000°С

Hg (38,9°С), Ga (29,78°С), Cs (28,5°С), Zn (419,5°C)

Производство радиотехники, жести

Тугоплавкие – температура плавления выше 1000°С

Cr (1890°С), Mo (2620°С), V (1900°С). Наиболее тугоплавкий – вольфрам (3420°С)

Изготовление ламп накаливания

Теплопроводность

Способность передавать тепло другим телам

Лучше всего проводят ток и тепло Ag, Cu, Au, Al

Приготовление пищи в металлической посуде

Электропроводность

Способность проводить электрический ток за счёт свободных электронов

Передача электричества по проводам

Примеры применения металлов

Рис. 3. Примеры применения металлов.

Что мы узнали?

Из урока 9 класса узнали о физических свойствах металлов. Кратко рассмотрели положение металлов в периодической таблице и особенности строения кристаллической решётки. Благодаря строению металлы обладают пластичностью, твёрдостью, способностью плавиться, проводить электрический ток и тепло. Свойства металлов неоднородны. Различают лёгкие и тяжёлые металлы, лёгкоплавкие и тугоплавкие, мягкие и твёрдые. Физические свойства используются для изготовления сплавов, электрических проводов, посуды, мыла, стекла, конструкций различной формы.

Тест по теме

Оценка доклада

Средняя оценка: 4.2. Всего получено оценок: 127.

Источник

1. Положение металлов в таблице элементов

Металлы располагаются в основном в левой и нижней части ПСХЭ. К ним относятся:

Деление элементов на металлы и неметаллы

Какие физические свойства металлов обусловлены металлической связью

2. Строение атомов металлов

У
атомов металлов на наружном энергоуровне обычно 1-3 электрона. Их атомы
обладают большим радиусом и легко отдают валентные электроны, т.е.
проявляют восстановительные свойства.

Металлы — восстановители

Какие физические свойства металлов обусловлены металлической связью

3. Физические свойства металлов

Какие физические свойства металлов обусловлены металлической связью

Изменение электропроводности металла при его нагревании и охлаждении

Металлическая связь – это связь, которую осуществляют свободные электроны между катионами в металлической кристаллической решётке.

4. Получение металлов

1. Восстановление металлов из
оксидов углем или угарным газом

MеxOy + C = CO2 + Me  или   MеxOy + CO = CO2
+ Me 

2. Обжиг сульфидов с
последующим восстановлением

1
стадия – MеxSy+O2=MеxOy+SO2

2 стадия —  MеxOy + C = CO2
+ Me  или   MеxOy + CO = CO2
+ Me 

3 Алюминотермия
(восстановление более активным металлом)

MеxOy
+ Al = Al2O3 + Me 

4.
Водородотермия — для получения металлов особой чистоты

MеxOy
+ H2 = H2O + Me 

5. Восстановление металлов электрическим током
(электролиз)

1) Щелочные и щелочноземельные металлы получают в промышленности
электролизом расплавов солей (хлоридов):

2NaCl –расплав,электр.
ток. → 2 Na + Cl2↑

CaCl2 –расплав,электр.
ток.→  Ca + Cl2↑

расплавов
гидроксидов:

4NaOH –расплав, электр. ток.→  4Na
+ O2↑ + 2H2O

2) Алюминий в промышленности получают в
результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов):

2Al2O3
–расплав
в криолите, электр. ток.→  4Al + 3 O2↑

Читайте также:  Какие основные свойства металлов

3)
Электролиз водных растворов солей используют для получения металлов средней
активности и неактивных:

2CuSO4+2H2O –раствор, электр. ток. →   2Cu
+ O2 + 2H2SO4

5. Нахождение металлов в природе

Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

ХИМИЧЕСКИЕ
СВОЙСТВА МЕТАЛЛОВ

Общие химические свойства металлов представлены в
таблице:

Какие физические свойства металлов обусловлены металлической связью

Видео «Самовоспламенение никеля на воздухе»

1).
Металлы по — разному  реагируют с водой:

Какие физические свойства металлов обусловлены металлической связью

Помните!!!

Алюминий реагирует с водой подобно активным
металлам, образуя основание:

2Al + 6H2O = 2Al(OH)3 + 3H2↑

2).  Металлы особо реагируют с серной концентрированной  и азотной кислотами:

H2SO(конц.) + Me = соль + H2O + Х       

Щелочные 

и щелочноземельные

Fe, Cr, Al

Металлы

до водорода

 Сd-Pb

Металлы после

водорода (при t)

Au, Pt

 X

H2S↑

могут S↓ или SO2↑

1)пассивируются на холоде;

2) при нагревании → SO2↑

 S

могут H2S илиSO2

SO2↑

H2SO4
(разб) + Zn = ZnSO4 + H2↑

H2SO4
(разб) + Cu ≠

2H2SO4
(конц.) + Cu = CuSO4 + 2H2O + SO2↑

Внимание!

Pt,
Au + H2SO4 (конц.) → реакции
нет

Al, Fe, Cr + H2SO4 (конц.)  холодная→ пассивация

Al,
Fe, Cr + H2SO4 (конц.) t˚C→ SO2

Какие физические свойства металлов обусловлены металлической связью

4HNO3
(k) + Cu = Cu(NO3)2 + 4H2O + 2NO2↑

8HNO3
(p) + 3Cu = 3Cu(NO3)2 + 4H2O + 2NO↑

Внимание!

Pt,
Au + HNO3 → реакции
нет

Al, Fe, Cr + HNO3 (конц) холодная→ пассивация

Al,
Fe, Cr + HNO3 (конц) t˚C→ NO2

Al, Fe, Cr + HNO3 (разб) → NO

3).
С растворами солей менее активных металлов

Ме
+ Соль = Новый металл + Новая соль

Вытеснение металла из соли другим металлом

ВИДЕО-ОПЫТ

Fe + CuCl2
= FeCl2 + Cu

FeCl2
+ Cu ≠

Активность
металла в реакциях с кислотами, водными растворами солей и др. можно
определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым:

Вытеснение водорода металлами

Какие физические свойства металлов обусловлены металлической связью

от
калия к золоту восстановительная способность (способность отдавать электроны)
уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из
растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее,
не вытесняют водород.

Видео – Эксперимент «Взаимодействие хлорида олова (II) с цинком («Оловянный ежик»)»

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Закончить уравнения практически осуществимых реакций, назвать продукты реакции

Li+ H2O =

Cu + H2O =

Al + H2O =

Ba + H2O =

Mg + H2O =

Ca + HCl=

Na + H2SO4(К)=

Al + H2S=

Ca + H3PO4=

HCl + Zn =

H2SO4 (к)+ Cu=

H2S + Mg =

HCl + Cu =

HNO3 (K)+ Сu =

H2S + Pt =

H3PO4 + Fe =

HNO3 (p)+ Na=

Fe + Pb(NO3)2 =

№2. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):

Al + O2 =

Li + H2O =

Na + HNO3 (k) =

Mg + Pb(NO3)2 =

Ni + HCl =

Ag + H2SO4 (k) =

№3. Вставьте вместо точек пропущенные знаки (<, > или =)

заряд ядра

Li…Rb

Na…Al

Ca…K

число энергетических уровней

Li…Rb

Na…Al

Ca…K

число внешних электронов

Li…Rb

Na…Al

Ca…K

радиус атома

Li…Rb

Na…Al

Ca…K

восстановительные свойства

Li…Rb

Na…Al

Ca…K

№4. Закончите УХР, расставьте коэффициенты методом электронного баланса, укажите окислитель (восстановитель):

K+ O2 =

Mg+ H2O =

Pb+ HNO3 (p) =

Fe+ CuCl2 =

Zn + H2SO4 (p) =

Zn + H2SO4 (k) =

№5. Решите тестовые задания

1.Выберите
группу элементов, в которой находятся только металлы:

А) Al, As, P;    Б) Mg, Ca, Si;    В) K, Ca, Pb

2.
Выберите группу, в которой находятся только простые вещества – неметаллы:

А) K2O, SO2, SiO2;    Б) H2, Cl2, I2 ;    В)Ca, Ba, HCl;

3. Укажите
общее в строении атомов K и Li:

А) 2
электрона на последнем электронном слое;

Б) 1
электрон на последнем электронном слое;

В)
одинаковое число электронных слоев.

4.
Металлический кальций проявляет свойства:

А)
окислителя;

Б)
восстановителя;

В)
окислителя или восстановителя в зависимости от условий.

5.
Металлические свойства натрия слабее, чем у –

А)
магния;   Б) калия;   В) лития.

6. К
неактивным металлам относятся:

А)
алюминий, медь, цинк;    Б) ртуть,
серебро, медь;

В)
кальций, бериллий, серебро.

7. Какое
физическое свойство не является общими для всех металлов:

А)
электропроводность,    Б)
теплопроводность,

В) твердое
агрегатное состояние при нормальных условиях,

Г)
металлический блеск

Часть В.
Ответом к заданиям этой части является набор букв, которые следует записать

Установите
соответствие.

С
увеличением порядкового номера элемента в главной подгруппе II группы
Периодической системы свойства элементов и образуемых ими веществ изменяются
следующим образом:

1) число
электронов на внешнем уровне

3)
электроотрицательность

4)
восстановительные свойства

А)
увеличивается

Б)
уменьшается

В) не
изменяется

Источник