Какие физические свойства имеют алканы

Какие физические свойства имеют алканы thumbnail

Àëêàíû – íàñûùåííûå (ïðåäåëüíûå) óãëåâîäîðîäû. Ïðåäñòàâèòåëåì ýòîãî êëàññà ÿâëÿåòñÿ ìåòàí (ÑÍ4). Âñå ïîñëåäóþùèå ïðåäåëüíûå óãëåâîäîðîäû îòëè÷àþòñÿ íà ÑÍ2– ãðóïïó, êîòîðàÿ íàçûâàåòñÿ ãîìîëîãè÷åñêîé ãðóïïîé, à ñîåäèíåíèÿ – ãîìîëîãàìè.

Îáùàÿ ôîðìóëà – ÑnH2n+2.

Àëêàíû Ñâîéñòâà àëêàíîâ

Ñòðîåíèå àëêàíîâ.

Êàæäûé àòîì óãëåðîäà íàõîäèòñÿ â sp3 – ãèáðèäèçàöèè, îáðàçóåò 4 σ— ñâÿçè (1 Ñ-Ñ è 3 Ñ-Í). Ôîðìà ìîëåêóëû â âèäå òåòðàýäðà ñ óãëîì 109,5°.

Ñâÿçü îáðàçóåòñÿ ïîñðåäñòâîì ïåðåêðûâàíèÿ ãèáðèäíûõ îðáèòàëåé, ïðè÷åì ìàêñèìàëüíàÿ îáëàñòü ïåðåêðûâàíèÿ ëåæèò â ïðîñòðàíñòâå íà ïðÿìîé, ñîåäèíÿþùåé ÿäðà àòîìîâ. Ýòî íàèáîëåå ýôôåêòèâíîå ïåðåêðûâàíèå, ïîýòîìó σ-ñâÿçü ñ÷èòàåòñÿ íàèáîëåå ïðî÷íîé.

Èçîìåðèÿ àëêàíîâ.

Äëÿ àëêàíîâ ñâîéñòâåííà èçîìåðèÿ óãëåðîäíîãî ñêåëåòà. Ïðåäåëüíûå ñîåäèíåíèÿ ìîãóò ïðèíèìàòü ðàçëè÷íûå ãåîìåòðè÷åñêèå ôîðìû, ñîõðàíÿÿ ïðè ýòîì óãîë ìåæäó ñâÿçÿìè. Íàïðèìåð,

Àëêàíû Ñâîéñòâà àëêàíîâ

Ðàçëè÷íûå ïîëîæåíèÿ óãëåðîäíîé öåïè íàçûâàþòñÿ êîíôîðìàöèÿìè.  íîðìàëüíûõ óñëîâèÿõ êîíôîðìàöèè àëêàíîâ ñâîáîäíî ïåðåõîäÿò äðóã â äðóãà ñ ïîìîùüþ âðàùåíèÿ Ñ-Ñ ñâÿçåé, ïîýòîìó èõ ÷àñòî íàçûâàþò ïîâîðîòíûìè èçîìåðàìè. Ñóùåñòâóåò 2 îñíîâíûå êîíôîðìàöèè – «çàòîðìîæåííîå» è «çàñëîíåííîå»:

Àëêàíû Ñâîéñòâà àëêàíîâ

Èçîìåðèÿ óãëåðîäíîãî ñêåëåòà àëêàíîâ.

Êîëè÷åñòâî èçîìåðîâ âîçðàñòàåò ñ óâåëè÷åíèåì ðîñòà óãëåðîäíîé öåïè. Íàïðèìåð ó áóòàíà èçâåñòíî 2 èçîìåðà:

Àëêàíû Ñâîéñòâà àëêàíîâ

Äëÿ ïåíòàíà – 3, äëÿ ãåïòàíà – 9 è ò.ä.

Åñëè ó ìîëåêóëû àëêàíà îòíÿòü îäèí ïðîòîí (àòîì âîäîðîäà), òî ïîëó÷èòñÿ ðàäèêàë:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ôèçè÷åñêèå ñâîéñòâà àëêàíîâ.

 íîðìàëüíûõ óñëîâèÿõ – Ñ1-Ñ4 – ãàçû, Ñ5-Ñ17 – æèäêîñòè, à óãëåâîäîðîäû ñ êîëè÷åñòâîì àòîìîâ óãëåðîäà áîëüøå 18 – òâåðäûå âåùåñòâà.

Ñ ðîñòîì öåïè ïîâûøàåòñÿ òåìïåðàòóðà êèïåíèÿ è ïëàâëåíèÿ. Ðàçâåòâëåííûå àëêàíû èìåþò áîëåå íèçêèå òåìïåðàòóðû êèïåíèÿ, ÷åì íîðìàëüíûå.

Àëêàíû íåðàñòâîðèìû â âîäå, íî õîðîøî ðàñòâîðÿþòñÿ â íåïîëÿðíûõ îðãàíè÷åñêèõ ðàñòâîðèòåëÿõ. Ëåãêî ñìåøèâàþòñÿ äðóã ñ äðóãîì.

Ïîëó÷åíèå àëêàíîâ.

Ñèíòåòè÷åñêèå ìåòîäû ïîëó÷åíèÿ àëêàíîâ:

1. Èç íåíàñûùåííûõ óãëåâîäîðîäîâ — ðåàêöèÿ «ãèäðèðîâàíèÿ» ïðîòåêàåò ïîä âîçäåéñòâèåì êàòàëèçàòîðà (íèêåëü, ïëàòèíà) è ïðè òåìïåðàòóðå:

Àëêàíû Ñâîéñòâà àëêàíîâ

2. Èç ãàëîãåíïðîèçâîäíûõ – ðåàêöèÿ Âþðöà: âçàèìîäåéñòâèå ìîíîãàëîãåíàêëêàíîâ ñ ìåòàëëè÷åñêèì íàòðèåì, â ðåçóëüòàòå ÷åãî ïîëó÷àþòñÿ àëêàíû ñ óäâîåííûì ÷èñëîì óãëåðîäíûõ àòîìîâ â öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

3. Èç ñîëåé êàðáîíîâûõ êèñëîò. Ïðè âçàèìîäåéñòâèè ñîëè ñ ùåëî÷è, ïîëó÷àþòñÿ àëêàíû, êîòîðûå ñîäåðæàò íà 1 àòîì óãëåðîä ìåíüøå ïî ñðàâíåíèþ ñ èñõîäíîé êàðáîíîâîé êèñëîòîé:

Àëêàíû Ñâîéñòâà àëêàíîâ

4. Ïîëó÷åíèå ìåòàíà.  ýëåêòðè÷åñêîé äóãå â àòìîñôåðå âîäîðîäà:

Ñ + 2Í2 = ÑÍ4.

 ëàáîðàòîðèè ìåòàí ïîëó÷àþò òàê:

Al4C3 + 12H2O = 3CH4 + 4Al(OH)3.

Õèìè÷åñêèå ñâîéñòâà àëêàíîâ.

 íîðìàëüíûõ óñëîâèÿõ àëêàíû – õèìè÷åñêè èíåðòíûå ñîåäèíåíèÿ, îíè íå ðåàãèðóþò ñ êîíöåíòðèðîâàííîé ñåðíîé è àçîòíîé êèñëîòîé, ñ êîíöåíòðèðîâàííîé ùåëî÷üþ, ñ ïåðìàíãàíàòîì êàëèÿ.

Óñòîé÷èâîñòü îáúÿñíÿåòñÿ ïðî÷íîñòüþ ñâÿçåé è èõ íåïîëÿðíîñòüþ.

Ñîåäèíåíèÿ íå ñêëîííû ê ðåàêöèÿõ ðàçðûâà ñâÿçè (ðåàêöèÿ ïðèñîåäèíåíèÿ), äëÿ íèõ ñâîéñòâåííî çàìåùåíèå.

1. Ãàëîãåíèðîâàíèå àëêàíîâ. Ïîä âîçäåéñòâèåì êâàíòà ñâåòà íà÷èíàåòñÿ ðàäèêàëüíîå çàìåùåíèå (õëîðèðîâàíèå) àëêàíà. Îáùàÿ ñõåìà:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ðåàêöèÿ èäåò ïî öåïíîìó ìåõàíèçìó, â êîòîðîé ðàçëè÷àþò:

À) Èíèöèèðîâàíèå öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Á) Ðîñò öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Â) Îáðûâ öåïè:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ñóììàðíî ìîæíî ïðåäñòàâèòü â âèäå:

Àëêàíû Ñâîéñòâà àëêàíîâ

2. Íèòðîâàíèå (ðåàêöèÿ Êîíîâàëîâà) àëêàíîâ. Ðåàêöèÿ ïðîòåêàåò ïðè 140 °Ñ:

Àëêàíû Ñâîéñòâà àëêàíîâ

Ëåã÷å âñåãî ðåàêöèÿ ïðîòåêàåò ñ òðåòèòè÷íûì àòîìîì óãëåðîäà, ÷åì ñ ïåðâè÷íûì è âòîðè÷íûì.

3. Èçîìðèçàöèÿ àëêàíîâ. Ïðè êîíêðåòíûõ óñëîâèÿõ àëêàíû íîðìàëüíîãî ñòðîåíèÿ ìîãóò ïðåâðàùàòüñÿ â ðàçâåòâëåííûå:

Àëêàíû Ñâîéñòâà àëêàíîâ

4. Êðåêèíã àëêàíîâ. Ïðè äåéñâèè âûñîêèõ òåìïåðàòóð è êàòàëèçàòîðîâ âûñøèå àëêàíû ìîãóò ðâàòü ñâîè ñâÿçè, îáðàçóÿ àëêåíû è àëêàíû áîëåå íèçøèå:

Àëêàíû Ñâîéñòâà àëêàíîâ

5. Îêèñëåíèå àëêàíîâ.  ðàçëè÷íûõ óñëîâèÿõ è ïðè ðàçíûõ êàòàëèçàòîðàõ îêèñëåíèå àëêàíà ìîæåò ïðèâåñòè ê îáðàçîâàíèþ ñïèðòà, àëüäåãèäà (êåòîíà) è óêñóñíîé êèñëîòû.  óñëîâèÿõ ïîëíîãî îêèñëåíèÿ ðåàêöèÿ ïðîòåêàåò äî êîíöà – äî îáðàçîâàíèÿ âîäû è óãëåêèñëîãî ãàçà: 

Àëêàíû Ñâîéñòâà àëêàíîâ

Àëêàíû Ñâîéñòâà àëêàíîâ

Ïðèìåíåíèå àëêàíîâ.

Àëêàíû íàøëè øèðîêîå ïðèìåíåíèå â ïðîìûøëåííîñòè, â ñèíòåçå íåôòè, òîïëèâà è ò.ä.

Источник

Количество атомов углерода в молекуле вещества определяет физические свойства алканов. Чем длиннее углеродная цепь, тем твёрже вещество. Подробнее о физических свойствах алканов читайте ниже.

Какие физические свойства имеют алканы

Гомологи

Алканы имеют общую формулу CnH2n+2. Самое простое вещество, относящееся к алканам – метан. Его также называют болотным газом. Метан образует гомологический ряд, в котором каждое последующее вещество отличается на одну группу CH2. Всего насчитывается 390 алканов.

Гомологи имеют схожие названия, состоящие из суффикса -ан и приставки, указывающей на число атомов в веществе:

  • ун- или ген- – один;
  • до- – два;
  • три- – три;
  • тетра- – четыре;
  • пент- – пять;
  • гекс- – шесть;
  • гепт- – семь;
  • окт- – восемь;
  • нон- – девять;
  • дек- – десять.

Приставки отсутствуют у первых четырёх гомологов. Их нужно запомнить: метан, этан, пропан, бутан.

Гомологический ряд

Рис. 1. Гомологический ряд.

Начиная с бутана, все алканы имеют изомеры. Их названия соответствуют основным названиям алканов с приставкой изо-. Для указания расположения метильной группы используются более точные длинные названия. Например, диметилпропан, 3-метилпентан, 2,2-диметилоктан. Цифры в названии соответствуют атомам, к которым примыкают метильные группы.

Изомеры с названиями

Рис. 2. Изомеры с названиями.

Алканы – предельные углеводороды, получаемые из природных ископаемых – нефти, каменного угля, газа. Также их могут выделять из солей карбоновых кислот, путём превращения алкенов и алкинов.

Физические свойства

От положения в гомологическом ряду зависят физические свойства алканов. В таблице указано физическое состояние первых 20 алканов.

Название

Формула

Агрегатное состояние

Метан

CH4

Бесцветные газы, без запаха и вкуса. Горят бледным или голубым пламенем (пламя газовой горелки) с большим выделением тепла

Этан

C2H6

Пропан

C3H8

Бутан

C4H10

Пентан

C5H12

Бесцветные маслянистые жидкости с резким бензиновым запахом

Гексан

C6H14

Гептан

C7H16

Октан

C8H18

Нонан

C9H20

Декан

C10H22

Ундекан

C11H24

Додекан

C12H26

Тридекан

C13H28

Тетрадекан

C14H30

Пентадекан

C15H32

Гексадекан

C16H34

Воскоподобные и твёрдые легкоплавкие вещества

Гептадекан

C17H36

Октадекан

C18H38

Нанадекан

C19H40

Эйкозан

C20H42

Все вещества, содержащие больше 15 атомов углерода, являются твёрдыми соединениями. Чем больше содержится в молекуле атомов углерода, тем выше температуры плавления и кипения. Однако чем меньше разветвлён изомер, тем выше его температуры плавления и кипения, поэтому разветвлённые изомеры кипят при более низких температурах, чем линейные аналоги.

Плотность всех алканов находится в пределах единицы (у воды – 1 г/см3), поэтому алканы плохо растворимы в воде и плавают на её поверхности. Растворяются в органических растворителях.

Другое название алканов – парафины. Обычные парафиновые свечи – смесь гомологичных алканов от октадекана (C18H38) до пентатриоконтана (С35Н72).

Читайте также:  Какие свойства относятся к физическим свойствам воды

Парафин

Рис. 3. Парафин.

Что мы узнали?

Узнали кратко о получении и физических свойствах алканов. Это предельные углеводороды, выделяемые из нефти и газа. Гомологический ряд алканов образует метан. Каждое последующее вещество отличается от предыдущего на одну СН2-группу. Физические свойства гомологов зависят от количества атомов углерода в молекуле. Первые четыре гомолога – бесцветные газы, алканы с 5-15 атомами углерода – маслянистые жидкости с резким запахом, остальные вещества – воскообразные и твёрдые соединения.

Тест по теме

Оценка доклада

Средняя оценка: 3.9. Всего получено оценок: 273.

Источник

Физические
свойства

В
обычных условиях

С1-
С4 – газы

С5-
С15 – жидкие

С16
– твёрдые

Температуры плавления и кипения алканов,
их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы.
Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных
растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические
свойства некоторых алканов представлены в таблице.

 Таблица 2. Физические свойства некоторых алканов

Название

Формула

tпл
°С

tкип
°С

Метан

СН4

-182,5

-161,5

Этан

С2Н6

-182,8

-88,6

Пропан

С3Н8

-187,7

-42

Бутан

С4Н10

-138,3

-0,5

Пентан

C5H12

-129,7

+36,1

Гексан

С6Н14

-95,3

68,7

Гептан

С7H16

-90,6

98,4

Октан

C8H18

-56,8

124,7

Нонан

С9Н20

-53,7

150,8

Декан

C10H22

-29,6

174,0

Пентадекан

C15H32

+10

270,6

Эйкозан

С20Н42

36,8

342,7

Пентакозан

C25H52

53,7

400

 Химические свойства алканов

1. Реакции замещения.

а)
 Галогенирование

при действии
света — hν  или нагревании (стадийно – замещение атомов
водорода на галоген носит последовательный цепной характер. Большой вклад в  разработку цепных реакций внёс физик,
академик, лауреат Нобелевской премии Н. Н. Семёнов )

В
реакции образуются вещества галогеналканы 
  или
С
nH2n+1Г

  (Г — это галогены F, Cl, Br, I)                                                                                    

CH4 + Cl2  hν  → CH3Cl + HCl (1 стадия)
;                       

метан                 хлорметан                                                                                                        CH3Cl + Cl2  hν  →  CH2Cl2 + HCl
(2 стадия);

                               дихлорметан                      

СH2Cl2 + Cl2 hν  →  CHCl3 + HCl (3 стадия);

                              трихлорметан

CHCl3 + Cl2 hν  →  CCl4 + HCl (4 стадия).

                             тетрахлорметан

Скорость реакции замещения водорода на атом галогена у
галогеналканов выше, чем у соответствующего алкана, это связано с взаимным
влиянием атомов в молекуле:

Какие физические свойства имеют алканы

Какие физические свойства имеют алканы

Электронная плотность связи С – Cl  смещена к более электроотрицательному хлору, в
результате на нём скапливается частичный отрицательный заряд, а на атоме
углерода – частичный положительный заряд.

На атом углерода в метильной группе ( — СН3) создаётся
дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт
соседних атомов водорода,  в результате
связь С – Н становится менее прочной и атомы водорода легче замещаются на атомы
хлора. При увеличении углеводородного радикала наиболее подвижными остаются
атомы водорода у атома углерода ближайщего к заместителю:

CH3 –
CH2 –
Cl + Cl2hν 
  CH3 – CHCl2 + HCl

хлорэтан                               1,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для
удаления
HI из рекции. 

Внимание!

В
реакциях замещения алканов легче всего замещаются атомы водорода у третичных
атомов углерода, затем у вторичных и, в последнюю очередь, у первичных.  Для хлорирования эта закономерность не
соблюдается при
T>400˚C.

б)
Нитрование

(реакция
М.И. Коновалова, он провёл её впервые в 1888 г)                               

CH4 + HNO3(растворС CH3NO2
+ H2O

                                                 нитрометан

RNO2илиСn H2n+1 NO2 (нитроалкан)

2. Реакции отщепления (дегидрирование)

а)  CnH2n+2   t˚С, Ni или Pd →    CnH2n
+ H2

б) При нагревании до 1500 С происходит образование ацетилена и водорода:

2CH4   1500°С →   C2H2 + 3H2

3. Реакции перегруппировки (изомеризация)            

н-алкан  AlCl3, t°С
 изоалкан 

4. Реакции горения (горят светлым не коптящим
пламенем) 

CnH2n+2 + O2 t°С →   nCO2 + (n+1)H2O

Помните!
Смесь метана с воздухом и кислородом взрывоопасна

V(CH4)
:
V(O2)
= 1: 2

V(CH4)
:
V(воздуха) = 1 : 10

5. Реакции разложения 

а)
Крекинг при температуре 700-1000°С разрываются (-С-С-) связи:                 

C10H22 t°С →  C5H12 + C5H10

                      алкан         алкен 

б)
Пиролиз при температуре 1000°С разрываются все связи,

продукты
– С и Н2:

СH4 1000°С → C + 2H2 

в)
Конверсия метана с образованием  синтез –
газа (СО + Н2)

CH4 + H2O 800˚C, Ni → СО + 3Н2 

Видео:

Горениепарафина в условиях избытка и недостатка кислорода

Горение
метана и изучение его физических свойств

Горениежидких углеводородов

         Горение твердых углеводородов (напримере парафина)

        Установление качественного составапредельных углеводородов

         Определение содержания хлора ворганических соединениях

Читайте также:  Какие есть свойства почвы

         Отношение метана к растворуперманганата калия и бромной воде

         Взрыв метана с кислородом

Источник

Алканы образуют гомологический ряд, каждое химическое соединение которого по составу отличается от последующего и предыдущего на одинаковое число атомов углерода и водорода – CH2, а вещества, входящие в гомологический ряд, называются гомологами. Гомологический ряд алканов представлен в таблице 1.

Таблица 1. Гомологический ряд алканов.

Название веществаСтруктурная формула

Метан

CH4

Этан

C2H6

Пропан

C3H8

Бутан

C4H10

Пентан

C5H12

Гексан

C6H14

Гептан

C7H16

Октан

C8H18

Нонан

C9H20

Декан

C10H22

В молекулах алканов выделяют первичные (т.е. связанные одной связью), вторичные (т.е. связанные двумя связями), третичные (т.е. связанные тремя связями) и четвертичные (т.е. связанные четырьмя связями) атомы углерода.

C1H3 – C2H2 – C1H3 (1 – первичные, 2- вторичные атомы углерода)

CH3 –C3H(CH3) – CH3 (3- третичный атом углерода)

CH3 – C4(CH3)3 – CH3 (4- четвертичный атом углерода)

Для алканов характерна структурная изомерия (изомерия углеродного скелета). Так, у пентана имеются следующие изомеры:

CH3-CH2-CH2-CH2-CH3 (пентан)

CH3 –CH(CH3)-CH2-CH3 (2-метилбутан)

CH3-C(CH3)2-CH3 (2,2 – диметилпропан)

Для алканов, начиная с гептана, характерна оптическая изомерия.

Атомы углерода в предельных углеводородах находятся в sp3 –гибридизации. Углы между связями в молекулах алканов 109,5^{circ}.

Химические свойства алканов

При обычных условиях алканы химически инертны — не реагируют ни с кислотами, ни со щелочами. Это объясняется высокой прочностью sigma-связей С-С и С-Н. Неполярные связи С-С и С-Н способны расщепляться только гомолитически под действием активных свободных радикалов. Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения. При радикальных реакция в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

Реакции радикального замещения имеют цепной характер. Основные стадии: зарождение (инициирование) цепи (1) – происходит под действием УФ-излучения и приводит к образованию свободных радикалов, рост цепи (2) – происходит за счет отрыва атома водорода от молекулы алкана; обрыв цепи (3) – происходит при столкновении двух одинаковых или разных радикалов.

X:X → 2X. (1)

R:H + X. → HX + R. (2)

R. + X:X → R:X + X. (2)

R. + R. → R:R (3)

R. + X. → R:X (3)

X. + X. → X:X (3)

Галогенирование.
При взаимодействии алканов с хлором и бромом при действии УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов:

CH4 + Cl2 = CH3Cl + HCl (хлорметан)

CH3Cl +Cl2 = CH2Cl2 + HCl (дихлорметан)

CH2Cl2 +Cl2 = CHCl3 + HCl (трихлорметан)

CHCl3 +Cl2 = CCl4 + HCl (тетрахлорметан)

Нитрование (реакция Коновалова)
. При действии разбавленной азотной кислоты на алканы при 140^{circ}С и небольшом давлении протекает радикальная реакция:

CH3-CH3 +HNO3 = CH3-CH2-NO2 (нитроэтан) + H2O

Сульфохлорирование и сульфоокисление.
Прямое сульфирование алканов протекает с трудом и чаще всего сопровождается окислением, в результате чего образуются алкансульфонилхлориды:

R-H + SO2 + Cl2 → R-SO3Cl + HCl

Реакция сульфоокисления протекает аналогично, только в этом случае образуются алкансульфоновые кислоты:

R-H + SO2 + ½ O2 → R-SO3H

Крекинг
– радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге высших алканов образуются алкены, при крекинге метана и этана образуется ацетилен:

С8H18 = C4H10 (бутан)+ C3H8 (пропан)

2CH4 = C2H2 (ацетилен) + 3H2↑

Окисление. При мягком окислении метана кислородом воздуха могут быть получены метанол, муравьиный альдегид или муравьиная кислота. На воздухе алканы сгорают до углекислого газа и воды:

CnH2n+2 + (3n+1)/2 O2 = nCO2 + (n+1)H2O

Физические свойства алканов

При обычных условиях С1-С4 – газы, С5-С17 – жидкости, начиная с С18 – твердые вещества. Алканы практически нерастворимы в воде, но, хорошо растворимы в неполярных растворителях, например, в бензоле. Так, метан СН4 (болотный, рудничий газ)
– газ без цвета и запаха, хорошо растворимый в этаноле, эфире, углеводородах, но плохо растворимый в воде. Метан используют в качестве высококалорийного топлива в составе природного газа, в качестве сырья для производства водорода, ацетилена, хлороформа и других органических веществ в промышленных масштабах.

Пропан С3Н8 и бутан С4Н10 – газы, применяемые в быту, в качестве балонных газов, за счет легкой сжижаемости. Пропан используется в качестве автомобильного топлива, поскольку является более экологически чистым, чем бензин. Бутан – сырье для получения 1,3
–бутадиена, использующегося в производстве синтетического каучука.

Получение алканов

Алканы получают из природных источников – природного газа (80-90% — метан, 2-3% — этан и другие предельные углеводороды), угля, торфа, древесины, нефти и горного воска.

Выделяют лабораторные и промышленные способы получения алканов. В промышленности алканы получают из битумного угля (1) или по реакции Фишера-Тропша (2):

nC + (n+1)H2 = CnH2n+2 (1)

nCO + (2n+1)H2 = CnH2n+2 + H2O (2)

К лабораторным способам получения алканов относят: гидрирование непредельных углеводородов при нагревании и в присутствии катализаторов (Ni, Pt, Pd) (1), взаимодействием воды с металлоорганическими соединениями (2), электролизом карбоновых кислот (3), по реакциям декарбоксилирования (4) и Вюрца (5) и другими способами.

R1-C≡C-R2 (алкин) → R1-CH = CH-R2 (алкен) → R1-CH2 – CH2 -R2 (алкан)
(1)

R-Cl + Mg → R-Mg-Cl + H2O → R-H (алкан) + Mg(OH)Cl (2)

CH3COONa↔ CH3COO— + Na+

2CH3COO— → 2CO2↑ + C2H6 (этан) (3)

CH3COONa + NaOH → CH4 + Na2CO3 (4)

R1-Cl +2Na +Cl-R2 →2NaCl + R1-R2 (5)

Примеры решения задач

Источник

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алканаФормула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества. 

Все алканы легче воды, не растворимы в воде и не смешиваются с ней.

Читайте также:  Какие свойства сложения и умножения

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах  образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp3:

Какие физические свойства имеют алканы

При образовании связи  С–С происходит перекрывание sp3-гибридных орбиталей атомов углерода:

Какие физические свойства имеют алканы

При образовании связи  С–H происходит перекрывание sp3-гибридной орбитали атома углерода и s-орбитали атома водорода:

Какие физические свойства имеют алканы

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109о 28′  друг к другу:

Какие физические свойства имеют алканы

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода

Какие физические свойства имеют алканы

Какие физические свойства имеют алканы

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Наример, пространственное строение н-бутана — зигзагообразное

Какие физические свойства имеют алканы

Структурная изомерия

Для  алканов характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Для н-бутана (алкана с линейной цепью) существует изомер с разветвленным углеродным скелетом – изобутан

С увеличением числа атомов углерода в молекуле увеличивается количество изомеров, соответствующих данной формуле.

Количество изомеров в ряду алканов:

Молекулярная формулаЧисло структурных изомеров
CH41
C2H61
C3H81
C4H102
C5H123
C6H145
C7H169
C8H1818
C9H2035
C10H2275

Оптическая изомерия

Если атом углерода в молекуле связан с четырьмя различными заместителями (атомами или атомными группами), например:

Какие физические свойства имеют алканы

то возможно существование двух соединений с одинаковой структурой, но различным пространственным строением.Молекулы таких соединений относятся друг к другу, как зеркальные изображение и предмет. При этом никаким вращением нельзя получить одну молекулу из другой.

В названиях алканов используется суффикс -АН.

Например, алкан имеет название 2-метилпропан.

Какие физические свойства имеют алканы

Для простейших алканов (метан, этан, пропан, бутан и изобутан) используют тривиальные названия. Начиная с пятиатомного углероводорода, в названии неразветвленных (нормальных) алканов используют корень, который показывает число атомов углерода в молекуле, и добавляют соответствующий суффикс (для алканов – ан, для алкенов – ен, и т.д.).

Название разветвленных алканов строится по следующим правилам:

1.  Выбирают главную углеродную цепь. При этом считают, что углеводородные радикалы, которые не входят в главной цепь,  являются в ней заместителями. При этом главная цепь должна быть самой длинной. Например, в молекуле на рисунке главной является цепь, отмеченная на рисунке а:

Главная цепь должна быть самой разветвленной.

Например, в молекуле, изображенной на рисунках а и б, выделены цепи с одинаковым числом атомов углерода. Но главной будет цепь, изображенная на рисунке а, т.к. от нее отходит 2 заместителя, а от  цепи на рисунке б – только один:

2. Нумеруют атомы углерода в главной цепи так, чтобы атомы углерода, которые соединены с заместителями, получили минимальные возможные номера. Причем нумерацию следует начинать с более близкого к старшей группе конца цепи.

3. Называют все радикалы, указывая впереди цифры, которые обозначают их расположение в главной цепи.

Например, 2-метилпропан:

Какие физические свойства имеют алканы

Для одинаковых заместителей эти цифры указывают через запятую, при этом количество одинаковых заместителей обозначается приставками ди- (два), три- (три), тетра- (четыре), пента- (пять) и т.д.

Например, 2,2-диметилпропан или 2,2,3-триметилпентан.

4. Названия заместителей со всеми приставками и цифрами располагают в алфавитном порядке.

Например: 2,2-диметил-3-этилпентан.

5. Называют главную углеродную цепь, т.е. соответствующий нормальный алкан.

Например, название молекулы на рисунке:

Какие физические свойства имеют алканы

2,2,4-триметил-4-этилгексан

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

 В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Какие физические свойства имеют алканыХлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Какие физические свойства имеют алканы

Химическая активность хлора  выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:Какие физические свойства имеют алканы

Бромирование протекает более медленно и избирательно.

Избирательность бромирования:  сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании 2-метилпропана преимущественно образуется 2-бром-2-метилпропан:

Какие физические свойства имеют алканы

Реакции замещения в алканах протекают по свободнорадикальному механизму.

 Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Какие физические свойства имеют алканы

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Какие физические свойства имеют алканы

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

Какие физические свойства имеют алканы

1.2. Нитрование алканов

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140оС и под давлением.  Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

Какие физические свойства имеют алканы