Какие есть свойства сложения

Какие есть свойства сложения thumbnail
  • Переместительное свойство умножения
  • Сочетательное свойство умножения
  • Распределительное свойство умножения

Переместительное свойство умножения

От перестановки сомножителей местами произведение не меняется.

Следовательно, для любых чисел  a  и  b  верно равенство:

a · b = b · a,

выражающее переместительное свойство умножения.

Примеры:

6 · 7 = 7 · 6 = 42;

4 · 2 · 3 = 3 · 2 · 4 = 24.

Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.

Сочетательное свойство умножения

Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.

Следовательно, для любых чисел  ab  и  c  верно равенство:

a · b · c = (a · b) · c = a · (b · c),

выражающее сочетательное свойство умножения.

Пример:

3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30

или

3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.

Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:

25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.

В данном случае можно было вычислить всё последовательно:

25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,

но проще и легче сначала умножить  25  на  4  и получить  100,  а уже потом умножить  100  на  15.

Распределительное свойство умножения

Сначала рассмотрим распределительное свойство умножения относительно сложения:

Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (a + b) = m · a + m · b,

выражающее распределительное свойство умножения.

Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(a + b) · m = a · m + b · m.

Теперь рассмотрим распределительное свойство умножения относительно вычитания:

Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (ab) = m · am · b.

Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(ab) · m = a · mb · m.

Переход от умножения:

m · (a + b)    и    m · (ab)

соответственно к сложению и вычитанию:

m · a + m · b    и    m · am · b

называется раскрытием скобок.

Переход от сложения и вычитания:

m · a + m · b    и    m · am · b

к умножению:

m · (a + b)    и    m · (ab)

называется вынесением общего множителя за скобки.

Источник

Математика, 2 класс

Урок № 16. Свойства сложения. Применение переместительного и сочетательного свойств сложения

Перечень вопросов, рассматриваемых в теме:

Что такое сочетательное свойство сложения?

-В каких случаях можно использовать свойства сложения?

Глоссарий по теме:

Переместительное свойство сложения: слагаемые можно переставлять местами, при этом значение суммы не изменится.

Сочетательное свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.44-47

2. Математика. КИМы. 2 кл: учебное пособие для общеобразовательных организаций/ Глаголева Ю.И., Волкова А.Д.-М.: Просвещение, Учлит, 2017, с.18, 19

3. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.- с.28, 29

Теоретический материал для самостоятельного изучения

Сравним выражения и их значения:

6+9 *9+6

45+5*5+45

Сумма чисел шесть и девять равна сумме чисел девять и шесть.

Сумма чисел сорок пять и пять равна сумме чисел пять и сорок пять.

6+9 =9+6

45+5=5+45

Что заметили?

Значения выражений равны, так как от перестановки слагаемых значение суммы не меняется. Вспомним, как в математике называется данное свойство сложения?

Правильно, оно называется переместительным свойством сложения.

Решим задачу.

В школьном спортзале 3 волейбольных мяча, 5 баскетбольных мячей и 4 футбольных мяча. Сколько всего мячей в спортзале?

Первый способ решения.

Сначала узнаем, сколько волейбольных и баскетбольных мячей, затем прибавим число футбольных мячей. Запишем: к сумме чисел три и пять прибавить четыре, получится двенадцать.

(3+5)+4=12 (м.)

Второй способ решения.

Прибавим к числу волейбольных мячей сумму баскетбольных и футбольных мячей. Запишем: к трем прибавить сумму чисел пять и четыре равно двенадцать.

Читайте также:  Какие полезные свойства есть у чеснока

3+(5+4)=12 (м.)

В обоих случаях получили одинаковый результат, значит, выражения равны между собой. Можем записать так: (3+5)+4=3+(5+4)

Теперь ты знаешь еще одно свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой. Это свойство называется сочетательным свойством сложения.

Знание этих двух свойств сложения позволит нам решать примеры на сложение удобным способом.

Решим выражение: 1+7+9+3=?

Мы знаем, что слагаемые можно менять местами и соседние слагаемые заменять их суммой. Воспользуемся свойствами сложения и найдем сумму.

1+7+9+3= (1+9)+(7+3)=10+10=20

В данном случае удобно сложить попарно 1 и 9, 7 и 3. А затем сложить полученные результаты. Получим 20.

Делаем вывод: используя переместительное и сочетательное свойства сложения можно складывать числа в любом порядке, как удобнее.

Тренировочные задания.

1. Вычислите суммы удобным способом

30 + 3 + 7 + 40 = _________ 4 + 10 + 6 + 70=_______________

Правильный ответ:

1. 30 + 3 + 7 + 40 = (3+7)+(30+40)=80 2. 4 + 10 + 6 + 70= (10+70)+(4+6)

2. Совместите название математического свойства с его значением и выражением

Результат сложения не изменится, если соседние слагаемые заменить их суммой.

Слагаемые можно переставлять местами, при этом значение суммы не изменится.

9+5+1+5 = (9+1) + (5+5)

9+6 = 6 + 9

Правильный ответ:

Результат сложения не изменится, если соседние слагаемые заменить их суммой.

Слагаемые можно переставлять местами, при этом значение суммы не изменится.

9+5+1+5 = (9+1) + (5+5)

9+6 = 6 + 9

Источник

Сочетай, перемещай, свойства действий

узнавай

Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.

  •  Свойства сложения

Переместительный закон сложения

Сумма не изменяется от перестановки  слагаемых .

Пример:
3 + 8 = 8 + 3;  5 + 2 + 4 = 2 + 5 + 4 = 4 + 2 + 5.
В общем случае:

a+b=b+a

a+b+c=c+a+b
Стоит иметь ввиду, что число слагаемых может быть и более трёх.

Сочетательный закон сложения

Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .

Пример:
3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;
4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.
В общем случае:
а + b + с = а+(b + с) = b+(а + с) и т. п.
Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.

Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим.

Пример:
5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.
В общем случае:

a+(b+c+d+…+x)=a+b+c+d+…+x

  • Свойства вычитания

Свойство вычитания суммы из числа

Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.

Например:
20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.
В общем случае:
а — (b + с + d+ …) = а — Ь — с — d — …

Свойство сложения разности чисел

Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.

Пример:
8 + (11-5) = 8+ 11 -5= 14.
В общем случае:
а + (b — с) = а + Ь — с.

Свойство вычитания разности из числа

Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.

Например:
18-(9-5) = 18 + 5-9= 14.
Вообще:
а — (Ь — с) = а + с — b.

  •  Свойства умножения

Переместительный закон умножения

Произведение не изменится от перестановки сомножителей .
Так:
4·5 = 5·4; 3·2·5 = 2·3·5 = 5·3·2.
Вообще:
a*b = b*a; abc… =b*а*с*… = c*b*a* …

Сочетательный закон умножения

Произведение нескольких сомножителей не изменится, если какие-нибудь из них заменить их произведением .

Так:
7*3*5 = 5*(3*7) = 5*21 = 105.

Вообще:
abc = а(bс) = b(ас) и т. п.

Умножение числа на произведение чисел

Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.

Так:
3*(5*4) = (3*5)*4= 15*4 = 60.
Вообще:
a•(bcd…) = {[(a·b)•c]•d}…
Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один
из сомножителей, оставив другие без изменения.

Так:
3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).
Вообще:
(abc.. )m = (аm)bс… = а(bm)с… и т. п.

Умножение числа на сумму чисел

Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.

Так:
(5 + 3)·7 = 5·7 + 3·7.
Вообще:
(а + b + с + .. .)n = an + bn + cn + …

В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.

Так:
5·(4 + 6) = 5·4 + 5·6.
Вообще:
r·(а + Ь + с +…) = rа + rb + rс + …

Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.

Распределительный закон умножения для разности чисел

Распределительный закон можно применять и к разности.

Читайте также:  Каким свойством углерода объясняется то что он является основным элементом

Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;

7 • (9 — 6) = 7 • 9 — 7 • 6.

Вообще:
(а — b)с = ас — bc,

а(b — с) = ab — ас,
т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить
отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.

  • Свойства деления

Деление суммы на число

Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:

Например:

(30+12+5)/3=30/3+12/3+5/3
Вообще:
(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)

Деление разности на число

Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:

(20-8)/5= 20/5 — 8/5

Вообще:

(a-b)/c = (a/c) -(b/c)

Деление произведения на число

Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:

(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:

(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.

Деление числа на произведение

Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:

120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.

Вообще:

а : (bcd …) = [(а : b) : с] : d… и т. п.

Укажем еще следующее свойство деления:

Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.
Поясним это свойство на следующих двух примерах:
1)8:3 = 8/3|,
умножим делимое и делитель, положим, на 5; тогда получим
новое частное: (8*5)/(3*5)
которое по сокращении дроби на 5 даст прежнее частное — 8/3

Вообще, какие бы числа a, b и m ни были, всегда
(am) : (bm) = а : b, что можно написать и так:
am/bm= a/b

Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.

Комментирование и размещение ссылок запрещено.

Источник

Свойства сложения – это первый шаг к ускорению счета. Ученик, владеющий всеми приемами быстрого сложения, имеет больше времени для сложных задач и проверки своего решения. Поэтому имеет смысл рассмотреть свойства сложения еще раз, чтобы правильно применять их на практике

Какие есть свойства сложения

Что такое сложение?

Для начала вспомним, что такое вообще сложение? Сложение это одна из первых операций, которые изучают в школе, а иногда даже в детском саду. Как правило, сложение объясняют на примере фруктов.

Если взять 3 груши и 2 яблока, сложить их в корзину, то груши это первое слагаемое, яблоки второе, а общее количество фруктов в корзине – сумма. Это определение нельзя назвать неправильным, но ученики растут, как растут и используемые числа. Сложно представить себе сложение сотен тысяч фруктов.

Поэтому в математике используют другое определение, которое гласит, что сложение это перемещение точки на числовой прямой в право.

Многие знания усложняются со временем. Так, если в начальной школе ученикам говорят, что отрицательный результат сложения это ошибка, то в 5 классе все уже знают, что такой ответ возможен. Так и с определением свойств сложения. Обычных фруктов просто не хватит для того, чтобы представить себе большие числа. Поэтому в старших классах уходят к теоретическим определениям.

Свойства сложения

Выделяют переместительное и сочетательное свойство. Переместительное свойство говорит нам о том, что от перемены мест слагаемых сумма не поменяется.

Сочетательное свойство утверждает, что в примерах, где два и более множителя, сложение может производиться в любом порядке. Главное в этом случае правильно сгруппировать слагаемые, чтобы ускорить вычисления, а не затруднить его еще сильнее. Самый простой вариант это смотреть на количество единиц в числе. В первую очередь нужно складывать те числа, сумма единиц в которых равняется 10, например 29 и 31 в сумме дадут 60.

После этого складывают целые десятки и только потом все остальное. Это наиболее простой и быстрый путь решение примеров на сложение.

На самом деле даже не каждый профессор сможет отличить применение сочетательного свойства от переместительного. Они крайне похожи, некоторые математики считают даже, что сочетательное свойство является продолжением переместительного. По той же причине учителя редко просят отличить применение в задаче одного свойства от другого. Нужно просто уметь пользоваться обоими.

Читайте также:  Каким свойством обладает шиповник

Пример

Примеры сочетательного свойства сложения найти не трудно. Практически в каждом примере используется это свойство.

15*3+5-13-17-2-16-2 – для начала выполним умножение.

45+5-13-17-2-16-2 – теперь сгруппируем члены так, чтобы вычислить результат как можно быстрее. Для этого нужно вспомнить, что разность можно представить, как сумму отрицательных чисел. В нашем случае просто вынесем минус за знак скобок.

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16) – теперь выполним вычисления в скобках и найдем окончательный результат

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16)=50-30-0=0

Вот такой ответ получился у достаточно большого примера. Не стоит пугаться простых ответов вроде 0 или 1. Иногда составители примеров таким образом путают учеников.

Что мы узнали?

Мы поговорили о сложении, выделили сочетательное и переместительное свойства сложения. Поговорили о различиях этих свойств, а также о правильном применении сочетательного свойства сложения. Решили небольшой пример, чтобы показать применение сочетательного свойства на практике.

Тест по теме

Оценка статьи

Средняя оценка: 4.6. Всего получено оценок: 146.

Источник

Ñëîæåíèå íàòóðàëüíûõ ÷èñåë îñíîâûâàåòñÿ íà ñëîæåíèè 2-õ íàòóðàëüíûõ ÷èñåë. Ñëîæåíèå 3-õ è áîëüøå ÷èñåë âûãëÿäèò êàê ïîñëåäîâàòåëüíîå ñëîæåíèå 2-õ ÷èñåë. Êðîìå òîãî, â ñèëó ïåðåìåñòèòåëüíîãî è ñî÷åòàòåëüíîãî ñâîéñòâà ñëîæåíèÿ, ÷èñëà, êîòîðûå ñêëàäûâàþòñÿ ìîæíî ìåíÿòü ìåñòàìè è çàìåíÿòü ëþáûå 2 èç ñêëàäûâàåìûõ ÷èñåë èõ ñóììîé.

Äåéñòâèå ñëîæåíèÿ ìàëåíüêèõ íàòóðàëüíûõ ÷èñåë ìîæíî ïðîèçâîäèòü â óìå ëèáî íà áóìàãå ïî ðàçðÿäàì ñëàãàåìûõ, ó÷èòûâàÿ òî, ÷òî êàæäûé ïîëíûé äåñÿòîê ðàçðÿäà ýòî 1 åäèíèöà ñëåäóþùåãî (áîëåå âûñîêîãî) ðàçðÿäà.

Íàïðèìåð: 235 + 672 = (200 + 600) + (30 + 70) + (5 + 2) = 907.

Ñêëàäûâàòü áîëüøèå (ìíîãîçíà÷íûå) íàòóðàëüíûå ÷èñëà ëó÷øå ìåòîäîì ñëîæåíèÿ â ñòîëáèê.

Ñî÷åòàòåëüíîå ñâîéñòâî ñëîæåíèÿ äîêàçûâàåò, ÷òî ðåçóëüòàò ñëîæåíèÿ 3-õ ÷èñåë a, b è c íå çàâèñèò îò ìåñòà ñêîáîê. Ò.î., ñóììû a+(b+c) è (a+b)+c ìîæíî çàïèñàòü êàê a+b+c. Ýòî âûðàæåíèå íàçûâàåòñÿ ñóììîé, à ÷èñëà a, b è cñëàãàåìûìè.

Àíàëîãè÷íî, â ñèëó ñî÷åòàòåëüíîãî ñâîéñòâà ñëîæåíèÿ, ðàâíû ñóììû (a+b)+(c+d), (a+(b+c))+d, ((a+b)+c)+d, a+(b+(c+d)) è a+((b+c)+d). Ò.å., èòîã ñëîæåíèÿ 4-õ íàòóðàëüíûõ ÷èñåë a, b, c è d íå çàâèñèò îò ìåñòà ðàñïîëîæåíèÿ ñêîáîê.  àêîì ñëó÷àå ñóììó çàïèñûâàþò êàê: a+b+c+d.

Åñëè â âûðàæåíèè íå ðàññòàâëåíû ñêîáêè, à îíî ñîñòîèò èç áîëåå,÷åì äâóõ ñëàãàåìûõ, âû ñàìè ìîæåòå ðàññòàâèòü ñêîáêè êàê âàì áîëüøå íðàâèòñÿ è, ïîñëåäîâàòåëüíî ñëîæèòü ïî 2 ÷èñëà, ïîëó÷èâ îòâåò. Ò.å., ïðîöåññ ñëîæåíèÿ 3-õ è áîëåå ÷èñåë ñâîäèòñÿ ê ïîñëåäîâàòåëüíîé çàìåíå 2-õ ñîñåäíèõ ñëàãàåìûõ èõ ñóììîé.

Äëÿ ïðèìåðà âû÷èñëèì ñóììó 1+3+2+1+5. Ðàññìîòðèì 2 ñïîñîáà èç áîëüøîãî êîëè÷åñòâà ñóùåñòâóþùèõ.

Ïåðâûé ñïîñîá. Íà êàæäîì øàãå çàìåíÿåì ïåðâûå 2 ñëàãàåìûõ ñóììîé.

Ò.ê. ñóììà ÷èñåë 1 è 3 ðàâíà 4, çíà÷èò:

 1+3+2+1+5=4+2+1+5 (ìû çàìåíèëè ñóììó 1+3 ÷èñëîì 4).

Ò.ê. ñóììà 4 + 2 ðàâíà 6, òî:

4+2+1+5=6+1+5.

Ò.ê. ñóììà ÷èñåë 6 è 1 ðàâíà 7, òî:

6+1+5=7+5

È ïîñëåäíèé øàã, 7+5=12. Ò.î.:

1+3+2+1+5=12

Ìû ïðîèçâåëè ñëîæåíèå, ðàññòàâèâ ñêîáêè ñëåäóþùèì îáðàçîì: (((1+3)+2)+1)+5.

Âòîðîé ñïîñîá. Ðàññòàâèì ñêîáêè òàêèì îáðàçîì: ((1+3)+(2+1))+5.

Òàê êàê 1+3=4, à 2+1=3, òî:

((1+3)+(2+1))+5=(4+3)+5

Ñóììà 4-õ è 3-õ ðàâíà 7, çíà÷èò:

(4+3)+5=7+5.

  È ïîñëåäíèé øàã: 7+5=12.

Íà ðåçóëüòàò ñëîæåíèÿ 2-õ, 3-õ, 4-õ è ò.ä. ÷èñåë íå âëèÿåò íå òîëüêî ðàññòàíîâêà ñêîáîê, íî è ïîðÿäîê, çàïèñûâàíèÿ ñëàãàåìûõ. Ò.î., ïðè ñóììèðîâàíèè íàòóðàëüíûõ ÷èñåë ìîæíî èçìåíÿòü ìåñòà ñëàãàåìûõ. Èíîãäà ýòî äàåò áîëåå ðàöèîíàëüíûé ïðîöåññ ðåøåíèÿ.

Ñâîéñòâà ñëîæåíèÿ íàòóðàëüíûõ ÷èñåë.

  • ×òîáû ïîëó÷èòü ÷èñëî, ñëåäóþùåå çà íàòóðàëüíûì íàäî ïðèáàâèòü ê íåìó åäèíèöó.   

        Íàïðèìåð:               3 + 1   =   4;             39 + 1   =   40. 

  • Ïðè ïåðåñòàíîâêå ìåñò ñëàãàåìûõ ñóììà íå ìåíÿåòñÿ:

                                        3 + 4   =   4 + 3   =   7 .   

         Ýòî ñâîéñòâî ñëîæåíèÿ íàçûâàåòñÿ ïåðåìåñòèòåëüíûì çàêîíîì.   

  • Ñóììà 3-õ è áîëåå ñëàãàåìûõ íå èçìåíèòñÿ îò èçìåíåíèÿ ïîðÿäêà ñëîæåíèÿ ÷èñåë.   

        Íàïðèìåð:          3 + ( 7 + 2 )     =   ( 3 + 7 ) + 2     =   12  ; 

        çíà÷èò:           a + ( b + c )   =   ( a + b ) + c .   

          Ïîýòîìó âìåñòî   3 + ( 7 + 2 )   ïèøóò   3 + 7 + 2   è ñêëàäûâàþò ÷èñëà ïî ïîðÿäêó, ñëåâà íà ïðàâî.   

      Ýòî ñâîéñòâî ñëîæåíèÿ íàçûâàþò ñî÷åòàòåëüíûì çàêîíîì ñëîæåíèÿ.   

  • Ïðè ïðèáàâëåíèè ê ÷èñëó ñóììà ðàâíà ñàìîìó ÷èñëó.   

                                      3 + 0   =   3 . 

È íàîáîðîò, ïðè ïðèáàâëåíèè ÷èñëà ê íóëþ, ñóììà ðàâíà ÷èñëó.   

                                      0 + 3   =   3;  

        çíà÷èò:           a + 0   =   a ;             0 + a   =   a .   

  • Åñëè òî÷êà C ðàçäåëÿåò îòðåçîê ÀÂ, òî ñóììà äëèí îòðåçêîâ AC è CB ðàâíà äëèíå îòðåçêà AB. 

 AB   =   AC + CB.   

×èñëà. Ñëîæåíèå íàòóðàëüíûõ ÷èñåë. Ñâîéñòâà ñëîæåíèÿ íàòóðàëüíûõ ÷èñåë.

Åñëè                AC = 2 ñì     à     CB   = 3 ñì , 

       òî                   AB   =   2 + 3   =   5 ñì.

Источник