Какие цифры содержатся в троичной системе счисления

Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Грузинская
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Трои́чная систе́ма счисле́ния — позиционная система счисления с целочисленным основанием, равным 3.

Существует в двух вариантах: несимметричная и симметричная.

Троичные цифры[править | править код]

В несимметричной троичной системе счисления чаще применяются цифры {0,1,2}, а в троичной симметричной системе счисления знаки {−,0,+}, {−1,0,+1}, {1,0,1}, {1,0,1}, {i,0,1}, {N,O,P}, {N,Z,P} и цифры {2,0,1}, {7,0,1}[источник не указан 2818 дней]. В распечатках ЭВМ «Сетунь» использовалось кодирование {1,0,1}[1]. Троичные цифры можно обозначать любыми тремя знаками {A,B,C}, но при этом дополнительно нужно указать старшинство знаков, например, A<B<C.

Физические реализации[править | править код]

В цифровой электронике, независимо от варианта троичной системы счисления, одному троичному разряду в троичной системе счисления соответствует один троичный триггер как минимум на трёх инверторах с логикой на входе или два двоичных триггера как минимум на четырёх инверторах с логикой на входе.

Представление чисел в троичных системах счисления[править | править код]

Несимметричная троичная система счисления[править | править код]

Примером представления чисел в несимметричной троичной системе счисления может служить запись в этой системе целых положительных чисел:

Десятичное число012345678910
Троичное число12101112202122100101

Если в десятичной системе счисления имеется 10 цифр и веса соседних разрядов различаются в 10 раз (разряд единиц, разряд десятков, разряд сотен), то в троичной системе используются только три цифры и веса соседних разрядов различаются в три раза (разряд единиц, разряд троек, разряд девяток, …). Цифра 1, написанная первой левее запятой, обозначает единицу; эта же цифра, написанная второй левее запятой, обозначает тройку и т. д.

Несимметричная троичная система счисления является частным случаем спаренных (комбинированных) показательных позиционных систем счисления, в которой ak — из троичного множества a={0,1,2}, b=3, веса разрядов равны 3k.

Показательные системы счисления[править | править код]

В показательных позиционных троичных системах счисления используются две системы:

  1. внутриразрядная система кодирования с основанием с, числа которой используются для записи цифр и
  2. приписная межразрядная система счисления с основанием b.

Целое число в показательной позиционной системе счисления представляется в виде суммы произведений значений в разрядах (цифр) — на k-е степени числа b:

, где:

  • k — число от до n-1, номер числового разрядa,
  • n — число разрядов,
  • с — основание системы кодирования, с равно размерности множества a={0,1,…,c-1} из которого берутся цифры ak,
  • ak — целые числа из множества a, называемые цифрами,
  • b — число, основание межразрядной показательной весовой функции,
  • bk — числа межразрядной функции, весовые коэффициенты разрядов.

Каждое произведение в такой записи называется (a, b)-ичным разрядом.

При c=b образуются (b, b)-ичные системы счисления с произведением — akbk и суммой — , которые при b=3 превращаются в обычную (3,3)-ичную (троичную) систему счисления. При записи первый индекс часто опускается, иногда, когда есть упоминание в тексте, опускается и второй индекс.

Весовой коэффициент разряда — bk — приписной и, в общем случае, может быть необязательно показательной функцией от номера разряда — k, и необязательно степенью числа 3. Множество значений ak более ограниченно и более связано с аппаратной частью — числом устойчивых состояний триггеров или числом состояний группы триггеров в одном разряде регистра. В общем случае, ak могут быть тоже необязательно из троичного множества a={0,1,2}, но, чтобы спаренной системе быть троичной и называться троичной, как минимум, одна из двух систем должна быть троичной. ak-е ближе к аппаратной части и по ak-м из множества a={0,1,2} или из множества a={-1,0,+1}, определяется система кодирования: несимметричная троичная или симметричная троичная.

Показательные троичные системы счисления[править | править код]

Целое число в показательной позиционной троичной системе записывают в виде последовательности его цифр (строки цифр), перечисляемых слева направо по убыванию старшинства разрядов:

В показательных системах счисления значениям разрядов приписываются весовые коэффициенты , в записи они опускаются, но подразумевается, что k-й разряд справа налево имеет весовой коэффициент равный .

Из комбинаторики известно, что количество записываемых кодов равно числу размещений с повторениями:

где a = 3 — 3-элементное множество a = {0, 1, 2}, из которого берутся цифры ak, n — число элементов (цифр) в числе x3,b.

Количество записываемых кодов не зависит от основания показательной функции — b, которое определяет диапазон представляемых числами x3,b величин.

Читайте также:  Система каких показателей содержится в бухгалтерском балансе

Дробное число записывается и представляется в виде

где m — число разрядов дробной части числа справа от запятой;

  • при m = 0 дробная часть отсутствует, число — целое,
  • при ak из троичного множества a = {0, 1, 2} и b = 1 образуется непозиционная троичная система счисления с одинаковыми весовыми коэффициентами всех разрядов равными 1k = 1,
  • при ak из двоичного множества a = {0, 1} и b = 3 в сумме будут только целые степени — 3k,
  • при ak из троичного множества a = {0, 1, 2} и b = 3 в сумме будут целые и удвоенные степени 3, система счисления становится обычной несимметричной троичной системой счисления, ak удовлетворяют неравенству , то есть ,
  • при ak из десятичного множества a = {0, 1, …, 9} и b = 3 в сумме будут целые степени 3 умноженные на 1, 2, …, 9.

В некоторых случаях этого может оказаться недостаточно, в таких случаях можно применить стро́енные (комтринированные), счетверённые и другие системы счисления.

Троичные системы счисления с дополнительным сомножителем[править | править код]

В показательных позиционных троичных системах счисления в вес разряда можно ввести дополнительный сомножитель. Например, сомножитель (b/с):

В общем случае c≠3.
При ak из a={0,1,2}, b=3 и c=3 образуется обычная несимметричная троичная система счисления.
При a=2, b=3 и c=2 образуется (2,3,2)-ичная система счисления с дополнительным нецелочисленным весовым коэффициентом в произведении равным (3/c)=(3/2)=1,5.
При других значениях a, b и c образуются другие показательные позиционные системы счисления с дополнительным сомножителем (b/c), число которых бесконечно.
Возможны бесконечные множества и других составных систем счисления.

Кодирование троичных цифр[править | править код]

Одна троичная цифра может кодироваться разными способами.

Трёхуровневые системы кодирования троичных цифр[править | править код]

1. Трёхуровневое кодирование троичных цифр (3-Level LevelCoded Ternary, 3L LCT, «однопроводное»):
Число трёхуровневых систем кодирования троичных цифр равно числу перестановок:

из них одна

1.1. Симметричная {-1,0,+1}
+U — (+1) ;
0 — (0) ;
-U — (-1) ,
1.2. Сдвинутая на +1 {0,1,2}
1.3. Сдвинутая на +2 {1,2,3}

Двухуровневые системы кодирования троичных цифр[править | править код]

2. Двухбитные двоичнокодированые троичные цифры (2-Bit BinaryCodedTernary, 2B BCT representation, «двухпроводное») с использованием 3-х кодов из 4-х возможных[2]:
Число возможных 2B BCT систем кодирования троичных цифр равно числу сочетаний без повторения:

умноженному на число перестановок в каждом наборе из 3-х цифр:
то есть 4*6 = 24.

Вот некоторые из них:
2.1.[3]
(1,0) — 2 ;
(0,1) — 1 ;
(0,0) — 0.
2.2.
(1,1) — 2;
(0,1) — 1;
(0,0) — 0.
3. Двухбитные двоичнокодированые троичные цифры (2-Bit BinaryCodedTernary, 2B BCT representation, «двухпроводное») с использованием всех 4-х кодов из 4-х возможных (два из 4-х кодов кодируют одну и туже троичную цифру из 3-х).
3.1.
Вот одна из них[4]:
(0,0) — «0»
(1,1) — «0»
(0,1) — «-1»
(1,0) — «+1»
4. Трёхбитные двоичнокодированые троичные цифры (3-Bit BinaryCodedTernary, 3B BCT representation, «трёхпроводное») с использованием 3-х кодов из 8-ми возможных:
Число возможных 3B BCT систем кодирования троичных цифр равно числу сочетаний без повторения:

умноженному на число перестановок в каждом наборе из 3-х цифр:
то есть 54*6 = 324.

Вот некоторые из них:
3.1.
(1,0,0) — 2;
(0,1,0) — 1;
(0,0,1) — 0.
3.2.
(0,1,1) — 2;
(1,0,1) — 1;
(0,1,0) — 0.
3.3.
(1,1,1) — 2;
(0,1,1) — 1;
(0,0,1) — 0.
3.4.
(0,0,0) — 2;
(1,0,0) — 1;
(1,1,0) — 0.
3.5.
(1,0,0) — 2;
(1,1,0) — 1;
(1,1,1) — 0.
3.6.
(0,1,1) — 2;
(0,0,1) — 1;
(0,0,0) — 0.
3.7.
(1,0,1) — 2;
(0,1,0) — 1;
(0,0,0) — 0.
и др.

Сравнение с двоичной системой счисления[править | править код]

При поразрядном сравнении троичная система счисления оказывается более ёмкой, чем двоичная система счисления.
При девяти разрядах двоичный код имеет ёмкость чисел, а троичный код имеет ёмкость числа, то есть в раза больше.
При двадцати семи разрядах двоичный код имеет ёмкость чисел, а троичный код имеет ёмкость чисел, то есть в раз больше.

Свойства[править | править код]

Троичная позиционная показательная несимметричная система счисления по затратам числа знаков (в трёхразрядном десятичном числе 3*10=30 знаков) наиболее экономична из позиционных показательных несимметричных систем счисления.[5][6][7][8][9] А. Кушнеров[6] приписывает эту теорему Джону фон Нейману.

Перевод целых чисел из десятичной системы счисления в троичную[править | править код]

Для перевода целое десятичное число делят нацело с остатком (целочисленное деление) на 3 до тех пор, пока частное больше нуля. Остатки, записанные слева направо от последнего к первому являются целым несимметричным троичным эквивалентом целого десятичного числа.[10][11]
Пример: десятичное целое число 4810,10 переведём в несимметричное троичное целое число:
число = 4810,10 делим на 3, частное = 16, остаток a0 = 0
частное = 1610,10 делим на 3, частное = 5, остаток a1 = 1
частное = 510,10 делим на 3, частное = 1, остаток a2 = 2
частное = 110,10 делим на 3, частное = 0, остаток a3 = 1
Частное не больше нуля, деление закончено.
Теперь, записав все остатки от последнего к первому слева направо, получим результат 4810,10 = (a3a2a1a0)3,3 = 12103,3.

Читайте также:  В каком продукте больше всего содержатся жиры

Симметричная троичная система счисления[править | править код]

Позиционная целочисленная симметричная троичная система счисления была предложена итальянским математиком Фибоначчи (Леонардо Пизанский) (1170—1250) для решения «задачи о гирях».[12] Задачу о наилучшей системе гирь рассматривал Лука Пачоли (XV в.). Частный случай этой задачи был опубликован в книге французского математика Клода Баше де Мезириака «Сборник занимательных задач» в 1612 году (русский перевод книги К. Г. Баше «Игры и задачи, основанные на математике» вышел в Петербурге только в 1877 г.). В 1797 году в России был издан закон «Об учреждении повсеместно в Российской империи верных весов питейных и хлебных мер». Для взвешивания товаров допускались только гири следующих весов: в 1 и 2 пуда, в 1, 3, 9, 27 фунтов и в 1, 3, 9, 27 и 81 золотник. Как приложение к закону была издана таблица для взвешивания товаров от 1 фунта до 40 фунтов при помощи гирь в 1, 3, 9, 27 фунтов и для взвешивания товаров от 1 золотника до 96 золотников при помощи гирь в 1, 3, 9, 27 и 81 золотник[13]. Этой задачей занимался петербургский академик Леонард Эйлер, а позже интересовался Д. И. Менделеев.[14][15][16][17][18]

Симметричность при взвешивании на рычажных весах использовали с древнейших времён, добавляя гирю на чашу с товаром. Элементы троичной системы счисления были в системе счисления древних шумеров,[19] в системах мер, весов и денег, в которых были единицы равные 3. Но только в симметричной троичной системе счисления Фибоначчи объединены оба этих свойства.

Симметричная система позволяет изображать отрицательные числа, не используя отдельный знак минуса. Число 2 изображается цифрой 1 в разряде троек и цифрой (минус единица) в разряде единиц. Число −2 изображается цифрой (минус единица) в разряде троек и цифрой 1 в разряде единиц.
Возможны шесть соответствий цифр (знаков) троичной симметричной системы счисления и цифр (знаков) троичной несимметричной системы счисления:

1.2.3.4.5.6.
12121
01212
121210

В соответствии 2. сохраняются числовые значения 0 и 1.

Десятичная система−9−8−7−6−5−4−3−2−10123456789
Троичная несимметричная−100−22−21−20−12−11−10−2−112101112202122100
Троичная симметричная10010111111011111101111111011111110111101100

В троичной симметричной системе счисления знак 1 можно заменить знаком (не числом) i или 2 и, во втором случае, использовать для троичной симметричной системы счисления {-1,0,+1} знаки троичной несимметричной системы {2,0,1}.

Свойства[править | править код]

Благодаря тому что основание 3 нечётно, в троичной системе возможно симметричное относительно нуля расположение цифр: −1, 0, 1, с которым связано шесть ценных свойств:

  • Естественность представления отрицательных чисел;
  • Отсутствие проблемы округления: обнуление ненужных младших разрядов округляет — приближает число к ближайшему «грубому».
  • Таблица умножения в этой системе, как отметил О. Л. Коши, примерно в четыре раза короче.[14](стр.34).
  • Для изменения знака представляемого числа нужно изменить ненулевые цифры на симметричные.
  • При суммировании большого количества чисел значение для переноса в следующий разряд растёт с увеличением количества слагаемых не линейно, а пропорционально квадратному корню числа слагаемых.
  • По затратам количества знаков на представление чисел она равна троичной несимметричной системе.

Представление отрицательных чисел[править | править код]

Наличие положительной и отрицательной цифр позволяет непосредственно представлять как положительные, так и отрицательные числа. При этом нет необходимости в специальном разряде знака и не надо вводить дополнительный (или обратный) код для выполнения арифметических операций с отрицательными числами. Все действия над числами, представленными в троичной симметричной системе счисления, выполняются, естественно, с учётом знаков чисел. Знак числа определяется знаком старшей значащей цифры числа: если она положительна, то и число положительно, если отрицательна, то и число отрицательно. Для изменения знака числа надо изменить знаки всех его цифр (то есть инвертировать его код инверсией Лукасевича). Например:

Округление[править | править код]

Другим полезным следствием симметричного расположения значений цифр является отсутствие проблемы округления чисел: абсолютная величина части числа, представленной отбрасываемыми младшими цифрами, никогда не превосходит половины абсолютной величины части числа, соответствующей младшей значащей цифре младшего из сохраняемых разрядов. Следовательно, в результате отбрасывания младших цифр числа получается наилучшее при данном количестве оставшихся цифр приближение этого числа, и округление не требуется.

Читайте также:  Какие бывают витамины и в каких продуктах они содержаться

Перевод чисел из десятичной системы в троичную[править | править код]

Перевод чисел из десятичной системы в троичную и соответствующий ему вопрос о гирях подробно изложены в книгах[20][21]. Там же рассказано о применении троичной системы гирь в русской практике.

Перевод в другие системы счисления[править | править код]

Всякое число, записанное в троичной системе счисления с цифрами 0, 1, −1, можно представить в виде суммы целых степеней числа 3, причём если в данном разряде троичного изображения числа стоит цифра 1, то соответствующая этому разряду степень числа 3 входит в сумму со знаком «+», если же цифра −1, то со знаком «-», а если цифра 0, то вовсе не входит. Это можно представить формулой

, где — целая часть числа,
 — дробная часть числа,

причём коэффициенты K могут принимать значения { 1, 0, −1 }.

Для того чтобы число, представленное в троичной системе, перевести в десятичную систему, надо цифру каждого разряда данного числа умножить на соответствующую этому разряду степень числа 3 (в десятичном представлении) и полученные произведения сложить.

Практические применения[править | править код]

  • Работая в палате мер и весов, Д. И. Менделеев, с учётом симметричной троичной системы счисления, разработал цифровой ряд значений весов разновеса для взвешивания на лабораторных весах, который используется по сей день.
  • Симметричная троичная система использовалась в советской ЭВМ Сетунь.

Таблицы сложения в троичных системах счисления[править | править код]

В троичной несимметричной системе счисления[править | править код]

2021011
1010210
0000102
+12

В троичной симметричной системе счисления[править | править код]

1000111
0010001
1110100
+11

Девятеричная форма представления команд[править | править код]

Представление команд троичным кодом при программировании и при вводе в машину неудобно и неэкономно, поэтому вне машины применяется девятеричная форма представления команд. Девятеричные цифры сопоставляются парам троичных цифр:

При выводе из машины отрицательные девятеричные цифры обозначают буквами:

См. также[править | править код]

  • Троичный код
  • Троичная логика
  • Сетунь (компьютер)
  • Троичный триггер
  • Троичный компьютер
  • Троичный разряд
  • Трайт
  • Единицы количества информации
  • Троичное кодирование

Примечания[править | править код]

  1. Н. А. Криницкий, Г. А. Миронов, Г. Д. Фролов, под ред. М. Р. Шура-Бура. Глава 10. Программно-управляемая машина «Сетунь» // Программирование (рус.). — М., 1963.
  2. ↑ https://314159.ru/kushnerov/kushnerov1.pdf Троичная цифровая техника. Ретроспектива и современность
  3. ↑ BCT: Binary Coded Ternary
  4. ↑ Тринари. Форум. Аппаратная часть. Сумматор. Блок 003 (недоступная ссылка)
  5. С. В. Фомин. Системы счисления. — М.: Наука, 1987. — 48 с. — (Популярные лекции по математике). (альтернативная ссылка)
  6. 1 2 А. Кушнеров Троичная цифровая техника. Ретроспектива и современность.
  7. ↑ https://web.archive.org/web/20120111141145/https://misterkruger.narod.ru/math/base3rus.htm Удивительное свойство троичной системы счисления]
  8. ↑ Экономичность систем счисления с показательной весовой функцией
  9. ↑ О. А. Акулов, Н. В. Медведев. Информатика и вычислительная техника. 4-е изд. — М.: Омега-Л, 2007. (Раздел I, Гл.3.3)
  10. ↑ Перевод десятичных целых чисел в троичные несимметричные целые числа
  11. ↑ https://algolist.manual.ru/maths/teornum/count_sys.php Перевод из системы с большим основанием — в систему с меньшим
  12. ↑ «Троичный принцип» Николая Брусенцова Архивная копия от 11 июня 2008 на Wayback Machine.
  13. ↑ Депман И. Я. Возникновение системы мер и способов измерения величин. Выпуск 1. (Москва: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР (Учпедгиз), 1956. — Серия «Библиотека школьника»). Глава VIII. § Использование наиболее удобной системы гирь в России. Стр.118
  14. 1 2 С. Б. Гашков. § 11. Д. И. Менделеев и троичная система // Системы счисления и их применение. — М.: МЦНМО, 2004. — (Библиотека «Математическое просвещение»). Архивная копия от 12 января 2014 на Wayback Machine В Google Chrome после нажатия на PDF(333Kb) нужно стронуть одну из боковых сторон рамки браузера.
  15. ↑ И. Я. Депман. История арифметики. Пособие для учителей. Издание второе, исправленное. Издательство «Просвещение», Москва, 1965. Глава I. Натуральное число. 7. Задача Баше — Менделеева, стр.36.
  16. ↑ Е. С. Давыдов, Наименьшие группы чисел для образования натуральных рядов, Спб., 1903, 36 стр.
  17. ↑ В. Ф. Гартц, Лучшая система для весовых гирь, Спб., 1910, 36 стр.
  18. ↑ Ф. А. Слудский, О свойствах степеней двух и трёх. «Математический сборник», ч. III, стр. 214.
  19. ↑ Юрий Ревич «Наследники Бэббиджа» // «Домашний компьютер», № 12, 1 декабря 2002 года.
  20. ↑ И. Я. Депман. «Меры и метрическая система», Учпедгиз, 1955.
  21. ↑ И. Я. Депман. «Возникновение системы мер и способов измерения величин», вып. 1, Учпедгиз, 1956.

Литература[править | править код]

  • Брусенцов Н. П., С. П. Маслов, В. П. Розин, А. М. Тишулина «Малая цифровая вычислительная машина Сетунь», Издательство Московского университета, 1965.
  • Фомин С. В. Системы счисления. — М.: Наука, 1987. — 48 с. — (Популярные лекции по математике).

Источник