Какие бывают свойства живых организмов
☰
Выделение общих свойств живых организмов позволят однозначно отличать живое от неживого. Точного определения, что такое жизнь или живой организм, нет, поэтому живое идентифицируют по комплексу его свойств, или признаков.
В отличие от тел неживой природы, живые организмы отличаются сложностью строения и функциональности. Но если рассматривать каждое свойство отдельно, то некоторые из них в той или иной форме можно наблюдать в неживой природе. Например, расти могут и кристаллы. Поэтому так важна совокупность свойств живых организмов.
На первый взгляд наблюдаемое многообразие организмов создает трудности для выявления их общих свойств и признаков. Однако по мере исторического развития биологических наук становились очевидными многие общие закономерности жизни, наблюдаемые у совершенно разных групп организмов.
Кроме ниже перечисленных свойств живого, также часто выделяют единство химического состава (схожесть у всех организмов и отличие соотношений элементов между живым и неживым), дискретность (организмы состоят из клеток, виды из отдельных особей и т. п.), участие в процессе эволюции, взаимодействие организмов между собой, подвижность, ритмичность и др.
Однозначного перечня признаков живого нет, отчасти это вопрос философский. Нередко, выделяя одно свойство, второе становится его следствием. Есть признаки живого, состоящие из ряда других. Кроме того, свойства живого тесно взаимосвязаны между собой, и эта взаимозависимость в совокупности дает такое уникальное явление природы как жизнь.
Обмен веществ – основное свойство живого
Все живые организмы осуществляют обмен веществ с окружающей средой: определенные вещества поступают в организм из среды, другие — выделяются в среду из организма. Это характеризует организм как открытую систему (также поток через систему энергии и информации). Наличие избирательного обмена веществ свидетельствует о том, что организм жив.
Обмен веществ в самом организме включает два противоположных, но взаимосвязанных и сбалансированных процесса — ассимиляцию (анаболизм) и диссимиляцию (катаболизм). Каждый из них состоит из многочисленных химических реакций, объединенных и упорядоченных в циклы и цепи превращения одних веществ в другие.
В результате ассимиляции образуются и обновляются структуры организма за счет синтеза необходимых сложных органических веществ из более простых органических, а также неорганических веществ. В результате диссимиляции происходит расщепление органических веществ, при этом образуются необходимые организму для ассимиляции более простые вещества, а также в молекулах АТФ запасается энергия.
Обмен веществ требует притока веществ извне, а ряд продуктов диссимиляции не находят применения в организме и должны из него удаляться.
Все живые организмы так или иначе питаются. Пища служит источником необходимых веществ и энергии. Растения питаются за счет процесса фотосинтеза. Животные и грибы поглощают органические вещества других организмов, после чего расщепляют их на более простые компоненты, из которых синтезируют свои вещества.
Для живых организмов свойственно выделение ряда веществ (у животных это в основном продукты расщепления белков — азотистые соединения), представляющих собой конечные продукты обмена веществ.
Пример ассимиляционного процесса — это синтез белка из аминокислот. Пример диссимиляции — окисление органического вещества при участии кислорода, в результате чего образуются углекислый газ (CO2) и вода, которые выводятся из организма (вода может использоваться).
Энергозависимость живого
Для осуществления процессов жизнедеятельности организмам необходим приток энергии. В гетеротрофные организмы она поступает вместе с пищей, то есть обмен веществ и поток энергии у них связаны. При расщеплении питательных веществ энергия высвобождается, запасается в других веществах, часть рассеивается в виде тепла.
Растения являются автотрофами и получают первоначальную энергию от Солнца (они улавливают его излучение). Эта энергия идет на синтез первичных органических веществ (в коих она и запасается) из неорганических. Это не значит, что в растениях не протекают химические реакции распада (диссимиляции) органических веществ для получения энергии. Однако растения не получают извне органику посредством питания. Она у них полностью «своя».
Энергия идет на поддержку упорядоченности, структурированности живых организмов, что важно для протекания многочисленных химических реакций в них. Противостояние энтропии — важное свойство живого.
Дыхание — это характерный для живых организмов процесс, в результате которого происходит расщепление высокоэнергетических соединений. Высвобождаемая при этом энергия запасается в АТФ.
В неживой природе (когда процессы пущены на самотек) структурированность систем рано или поздно утрачивается. При этом устанавливается то или иное равновесие (например, горячее тело отдает тепло другим, температура тел выравнивается). Чем меньше упорядоченность, тем больше энтропия. Если система закрыта и в ней протекают процессы, которые не уравновешивают друг друга, то энтропия увеличивается (второй закон термодинамики). Живые организмы обладают свойством уменьшать энтропию путем поддержания внутренней структуры за счет притока энергии из вне.
Наследственность и изменчивость как свойство живого
В основе самообновления структур живых организмов, а также размножения (самовоспроизведения) организмов лежит наследственность, которая связана с особенностями молекул ДНК. При этом в ДНК могут появляться изменения, которые приводят к изменчивости организмов и обеспечивают возможность процесса эволюции. Таким образом, живые организмы обладают генетической (биологической) информацией, что также можно обозначить как основной и исключительный признак живого.
Несмотря на способность к самообновлению, она у организмов не вечна. Продолжительность жизни особи ограничена. Однако живое остается бессмертным благодаря процессу размножения, которое может быть как половым, так и бесполым. При этом происходит наследование признаков родителей путем передачи ими потомкам своей ДНК.
Биологическая информация записана с помощью особого генетического кода, который универсален для всех организмов на Земле, что может говорить о единстве происхождения живого.
Генетический код хранится и реализуется в биологических полимерах: ДНК, РНК, белках. Такие сложные молекулы также являются особенностью живого.
Информация, хранимая в ДНК, при переносе на белки выражается для живых организмов в таких их свойствах как генотип и фенотип. Все организмы обладают ими.
Рост и развитие — свойства живых организмов
Рост и развитие — это свойства живых организмов, реализуемые в процессе их онтогенеза (индивидуального развития). Рост — это увеличение размеров и массы тела с сохранением общего плана строения. В процессе развития организм меняется, он приобретает новые признаки и функциональность, другие — могут быть утеряны. То есть в результате развития возникает новое качественное состояние. У живых организмов обычно рост сопровождается развитием (или развитие ростом). Развитие направлено и необратимо.
Кроме индивидуального развития выделяют историческое развитие жизни на Земле, которое сопровождается образованием новых видов и усложнением жизненных форм.
Хотя рост можно наблюдать и в неживой природе (например, у кристаллов или пещерных сталагмитов), его механизм у живых организмов иной. В неживой природе рост осуществляется за счет простого присоединения вещества к наружной поверхности. Живые организмы растут за счет питательных веществ, поступающих внутрь. При этом у них увеличиваются не столько сами клетки, сколько возрастает их количество.
Раздражимость и саморегуляция
Живые организмы обладают свойством в определенных пределах изменять свое состояние в зависимости от условий как внешней, так и внутренней среды. В процессе эволюции у видов выработались различные способы регистрации параметров среды (среди прочего посредством органов чувств) и ответной реакции на разные раздражители.
Раздражимость живых организмов избирательна, то есть они реагируют только на то, что важно для сохранения их жизни.
Раздражимость лежит в основе саморегуляции организма, которая, в свою очередь, имеет приспособительное значение. Так при повышении температуры тела у млекопитающих расширяются кровеносные сосуды, отдавая в окружающую среду тепло в большем количестве. В результате температура животного нормализуется.
У высших животных многие реакции на внешние раздражители зависят от достаточно сложного поведения.
Живые системы имеют общие признаки:
1. единство химического состава свидетельствует о единстве и связи живой и неживой материи.
Пример:
в состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в других количественных соотношениях (т. е. живые организмы обладают способностью избирательного накопления и поглощения элементов). Более (90) % химического состава приходится на четыре элемента: С, O, N, H, которые участвуют в образовании сложных органических молекул (белков, нуклеиновых кислот, углеводов, липидов).
2. Клеточное строение (Единство структурной организации). Все существующие на Земле организмы состоят из клеток. Вне клетки жизни нет.
3. Обмен веществ (Открытость живых систем). Все живые организмы представляют собой «открытые системы».
Открытость системы — свойство всех живых систем, связанное с постоянным поступлением энергии извне и удалением продуктов жизнедеятельности (организм жив, пока в нём происходит обмен веществами и энергией с окружающей средой).
Обмен веществ — совокупность биохимических превращений, происходящих в организме и других биосистемах.
Обмен веществ состоит из двух взаимосвязанных процессов: синтеза органических веществ (ассимиляции) в организме (за счёт внешних источников энергии — света и пищи) и процесса распада сложных органических веществ (диссимиляции) с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.
4. Самовоспроизведение (Репродукция) — способность живых систем воспроизводить себе подобных. Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит процесс удвоения молекул ДНК с последующим делением клеток.
5. Саморегуляция (Гомеостаз) — поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях окружающей среды. Любой живой организм обеспечивает поддержание гомеостаза (постоянства внутренней среды организма). Стойкое нарушение гомеостаза ведёт к гибели организма.
6. Развитие и рост. Развитие живого представлено индивидуальным развитием организма (онтогенезом) и историческим развитием живой природы (филогенезом).
- В процессе индивидуального развития постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост (все живые организмы растут в течение своей жизни).
- Результатом исторического развития является общее прогрессивное усложнение жизни и всё многообразие живых организмов на Земле. Под развитием понимают как индивидуальное развитие, так и историческое развитие.
7. Раздражимость — способность организма избирательно реагировать на внешние и внутренние раздражители (рефлексы у животных; тропизмы, таксисы и настии у растений).
8. Наследственность и изменчивость представляют собой факторы эволюции, так как благодаря им возникает материал для отбора.
- Изменчивость — способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и/или изменений наследственного аппарата (молекул ДНК).
- Наследственность — способность организма передавать свои признаки последующим поколениям.
9. Способность к адаптациям — в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
10. Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна. Эта закономерность присуща как структуре, так и функции.
Любой организм представляет собой целостную систему, которая в то же время состоит из дискретных единиц — клеточных структур, клеток, тканей, органов, систем органов. Органический мир целостен, поскольку все организмы и происходящие в нём процессы взаимосвязаны. В то же время он дискретен, так как складывается из отдельных организмов.
Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе.
Пример:
для живых организмов характерен рост, но ведь и кристаллы растут! Хотя этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.
Пример:
для горящей свечи характерны процессы обмена и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.
Следовательно, все перечисленные выше свойства характерны для живых организмов только в своей совокупности.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
https://900igr.net/kartinki/geografija/Krugovoroty-v-biosfere/005-Priznaki-zhivogo.html
Биология является наукой, изучающей жизнь во всех направлениях и общие свойства живого.
По Энгельсу, жизнь – способ существования белковых тел, существенным моментом которого явл. постоянный обмен веществ с окружающей средой, с прекращением которого прекращается и жизнь, что приводит к распаду белков.
Современное определение: живые тела, существующие на Земле – открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот.
Для живых организмов характерны свойства, отличающие их от объектов неживой природы:
1. Определенный химический состав.
В состав живых организмов входят те же химические элементы, что и в неживые объекты, но в различных пропорциях. Из 100 элементов необходимы 20. Выделяют обязательные (органогенные) элементы – водород, углерод, кислород, азот.
Так же важны натрий, калий, кальций, магний, сера, фосфор. Все организмы построены из белков, жиров, углеводов и нуклеиновых кислот.
2. Наличие клеточного строения (кроме бактерий).
Клетка – структурно-функциональная единица живого.
3. Обмен веществ и энергозависимость.
Живой организм – открытая устойчивая система, которая при поступлении энергии извне, находится в динамическом равновесии.
4. Способность к саморегуляции.
Гомеостаз – способность поддерживать постоянство химическо-физических свойств.
Показатели гомеостаза: температура, давление, количество воды, энергия, скорость обменных процессов.
В тканях показатель гомеостаза – количество клеток.
В органах – интенсивность работы.
В популяциях – соотношение возрастных групп и половой состав.
5. Способность к самовоспроизведению.
a. Воспроизведение себе подобных.
b. Передача наследственной информации.
c. Главным переносчиком информации явл. хромосомы.
6. Наследственность.
Наследственность – способность живых организмов передавать признаки и свойства из поколения в поколение при помощи ДНК и РНК. Закономерности изучает генетика. Мендель предположил, что признаки определяются генами. Ген – участок молекулы ДНК, кодирующий первичную структуру белка.
Ген — белок — признак.
7. Изменчивость.
Изменчивость – способность живых организмов приобретать новые признаки и свойства в процессе индивидуального развития. Изменчивость создает материал для естественного отбора.
8. Индивидуальное развитие.
Онтогенез – процесс индивидуального развития организма от момента оплодотворения до момента смерти. Развитие сопровождается ростом, продолжительность роста ограничена процессами старения.
Ι. Проэнтогенез-гаметогенез, оплодотворение.
ΙΙ. Эмбриональный период – рождение.
ΙΙΙ. Постэмбриональный – ювенильный, этап зрелости, этап старости.
9. Историческое развитие.
Филогенез – историческое развитие мира; необратимое и направленное развитие живой природы, сопровождающееся появлением новых видов и прогрессивным усложнением жизни. Все разнообразие видов растений и животных есть результат эволюции.
10. Раздражимость.
Раздражимость – способность живых организмов отвечать на внешние и внутренние раздражители специфическими реакциями.
Формы:
фототропизм (поворот листьев в сторону солнца);
геотропизм (рост кончика корня по отношению к центру Земли);
таксис (однонаправленное движение К или ОТ источника раздражения);
рефлекс (свойство организма отвечать на действие раздражителей при обязательном участии нервной системы).
11. Движение.
Организмы способны двигаться различными способами:
a. Амебоидная – с помощью ложноножек (амеба обыкновенная, лейкоциты);
b. Реактивная – с помощью выстреливания струи воды (медузы, головоногие моллюски);
c. Ресничные – с помощью ресничек — выростов клетки, окруженных цитолеммой, (инфузория-туфелька).
d. Жгутиковые – с помощью жгутика – выроста клетки, окруженного цитолеммой, но длиннее реснички (эвглена зеленая, Вольвокс, сперматозоид).
e. С помощью сократительных мышц.
12. Ритмичность.
Ритмичность – повторение состояний организма через промежуток времени в ответ на изменения внешней среды. Биоритмы (эктогенные – внешние; эндогенные – внутренние).
13. Целостность и дискретность.
С одной стороны, живая природа целостна, организованна, подчиняется определенным законам. С другой стороны, природа дискретна, т.е. любая биологическая система состоит из обособленных, но тесно связанных элементов.
Принцип дискретности лег в основу представлений об уровне организации живой материи.
Уровни организации живой природы.
Уровеньорганизации живой природы – функциональное место данной биологической системы определенной степени сложности в общей системе живого.
Развитие уровней в процессе происхождения из низшего в высшее, с появлением более высшего уровня предыдущий не исчезал, а лишь утрачивал ведущую роль, входил в состав как подчиненная структура или функциональная единица.
Таблица№1. Уровни организации живого.
Название уровня | Биосистема | Понятие | Элементы, обр. систему. | Науки |
Молекулярно-генетический. (обмен в-в и передача насл. информации) | Биополимеры (белки, нуклеиновые кислоты, полисахариды). | Биополимеры – сложные органические вещества с огромной молекулярной массой, состоящие из мономеров. | АК, нуклеотиды, моносахариды | Генетика Мол. Биология Биохимия Биофизика |
Клеточный. (кроме вирусов) | Клетка | Клетка – структурно-функциональная единица живого. | Оболочка Цитоплазма Ядро | Цитология |
Организменный. Подчиняет подуровни: Тканевый Органный. | Ткань => Органы=> Системы органов=> Организм | Ткань – совокупность клеток, сходных по строению, происхождению и выполняющие общие функции. Орган – часть тела, выполняющая определенные функции. Система органов – ряд органов, имеющих общий план строения, единство происхождения и выполняющих одну большую функцию. Организм – любое существо, обладающее свойствами живого. | Клетки. Межклеточное в-во. Ткань. Системы органов | Гистология Анатомия Физиология |
Надорганизменные уровни | ||||
Популяционно-видовой. Подчиняет: Популяционный Видовой | Популяция Вид | Популяция – совокупность особей одного вида, населяющих пространство с однородными условиями. Вид – совокупность популяций, особи которых занимают определенный ареал, способные скрещиваться и давать плодовитое потомство. | Особи Популяции | Популяционная экология |
Биогеоценотический | Биогеоценоз (сообщество живых организмов)+ Биотоп (участок абиотической среды) | Биогеоценоз – совокупность организмов разных видов, обитающих на определенной территории и взаимосвязанных между собой пространственными и пищеварительными связями. Осн. функция – круговорот веществ и энергии, который заключается в превращении энергии Солнца во все виды энергии. | Виды | Экология сообществ |
Биосферный | Биосфера | Биосфера – оболочка Земли, заселенная живыми организмами, включает нижнюю часть атмосферы, всю гидросферу и верхнюю часть литосферы. | Биогеоценозы | Экология |
Раздел 1.
Основы цитологии. Понятие цитологии. Предмет и задача цитологии.
Цитология – наука, изучающая строение, химический состав, развитие и функции, процессы воспроизведения, восстановления и адаптации клетки к меняющимся условиям среды.
Цитология, как самостоятельная наука возникла в середине XΙX века с выхода в свет клеточной теории Шлейдена и Шванна (1838-1839). За последние 20-30 лет из описательной науки превратилась в экспериментальную.
Задача современной цитологии: изучение детального строения клеток и их функционирования; исследование функций отдельных компонентов, воспроизведение клеток и приспособление к окружающей среде.
Цитология – фундамент для ряда наук (анатомия, гистология, генетика, физиология, биохимия, экология). Огромное значение цитология имеет для медицины т.к. любые заболевания имеют патологию конкретных клеток, что важно для понимания развития заболевания, диагностики, лечения и профилактики.
История развития цитологии.
Развитие цитологии связано с созданием и совершенствованием оптических устройств, позволяющих рассматривать и изучать клетки.
1610- голландский ученый Галилео Галилей сконструировал первый микроскоп, а после его усовершенствования в 1924 году его можно было использовать для первых исследований.
1665 – английский ученый Р. Гук с помощью увеличительных линз наблюдал в тонком срезе пробковой пластинки и назвал их клетками.
Во второй половине XVΙΙ века описания Гука легли в основу исследований анатомии растений Мальпиге, который подтверждал теорию Гука.
1680 – голландский ученый Антони ван Левенгук открыл мир одноклеточных и увидел клетки животных. Открыл и описал эритроциты, сперматозоиды, клетки сердечной мышцы.
Дальнейший прогресс в изучении клетки связан с развитием микроскопии XΙX века. Изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а цитоплазма (Пуркине, 1830г).
В 30х годах XΙX века английский ученый английский ученый Броун обнаружил в клетках растений ядро и предложил термин «ядро». Обнаружил ядро в клетках грибов и животных. Эти и другие многочисленные наблюдения позволили Шванну сделать ряд обобщений. Так Шванн показал, что клетки растений и животных принципиально схожи между собой. Шванном была сформулирована клеточная теория, т.к. при создании теории он пользовался трудами Шлейдена, то его так же считают создателем теории.