Какие бывают свойства системы

Какие бывают свойства системы thumbnail

Элемент характеризуется конкретными свойствами, определяющими его в данной системе однозначно. Элемент – неделимая часть системы
 

Существует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенные свойства (рис. 1).

Рис. 1. Понятие системы

«Система – это комплекс взаимодействующих компонентов».

«Система – это множество связанных действующих элементов».

«Система – это не просто совокупность единиц… а совокупность отношений между этими единицами».

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего «целое, составленное из частей») представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Системаопределяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.

Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства.Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы. Свойства – это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующиеосновные свойства системы:

· Система есть совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.

· Наличие существенных связей между элементами.Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.

· Наличие определенной организации, что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.

· Наличие интегративных свойств, т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.

· Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.

· Целостность– это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.

· Делимость– возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.

· Коммуникативность. Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.

· Системе присуще свойство развиваться,адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.

· Иерархичность. Под иерархиейпонимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системысостоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.

· Важным системным свойством является системная инерция,определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.

· Многофункциональность– способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.

· Гибкость– это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.

· Адаптивность– способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.

· Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.

· Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.

· Уязвимость– способность получать повреждения при воздействии внешних и (или) внутренних факторов.

· Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.

· Динамичность – это способность функционировать во времени.

· Наличие обратной связи.

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, …), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть ZСД (подпространство) – множество допустимых состояний системы.

Читайте также:  По каким физическим свойствам

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

3. Понятие структуры системы.

Структура системы – совокупность элементов системы и связей между ними в виде множества.Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов, от аспектов рассмотрения, от целей создания. В ходе проектирования структура может изменяться.

 
 

Рис. 2. Структура системы

Понятие элемента системы. По определению элемент – это составная часть сложного целого. В нашем понятии сложное целое – это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент– часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними прояв­лениями в виде связей и взаимосвязей с остальными элемен­тами и внешней средой.

Понятие связи. Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи – совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие внешней среды. Система существует среди других материальных или нематериальных объектов, которые не вошли в систему и объединяются поняти­ем «внешняя среда» – объекты внешней среды. Вход характеризует воздействие внешней среды на систему, выход – воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система – объект анализа (синтеза), а другая – как внешняя среда.

Внешняя среда – набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда – это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Типы структур

Рассмотрим ряд типовых структур систем, использующихся при описании организационно-экономических, производственных и технических объектов.

Обычно понятие «структура» связывают с графическим отображением элементов и их связей. Однако структура может быть представлена и в матричной форме, форме теоретико-множественного описания, с помощью языка топологии, алгебры и других средств моделирования систем [11].

Линейная (последовательная)структура (рис. 8) характеризуется тем, что каждая вершина связана с двумя соседними При выходе из строя хотя бы одного элемента (связи) структура разрушается. Примером такой структуры является конвейер.

Кольцеваяструктура (рис. 9) отличается замкнутостью, любые два элемента обладают двумя направлениями связи. Это повышает скорость общения, делает структуру более живучей.

Сотоваяструктура (рис. 10) характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.

Многосвязнаяструктура (рис. 11) имеет структуру полного графа. Надежность функционирования максимальная, эффективность функционирования высокая за счет наличия кратчайших путей, стоимость — максимальная.

Звезднаяструктура (рис. 12) имеет центральный узел, который выполняет роль центра, все остальные элементы системы являются подчиненными.

Графоваяструктура (рис. 13) используется обычно при описании производственно-технологических систем.

Сетеваяструктура (сеть)— разновидность графовой структуры, представляющая собой декомпозицию системы во времени.

Например, сетевая структура может отображать порядок действия технической системы (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции — сетевой график, при проектировании — сетевая модель, при планировании — сетевая модель, сетевой план и т. д.).

Иерархическаяструктура получила наиболее широкое распространение при проектировании систем управления, чем выше уровень иерархии, тем меньшим числом связей обладают его элементы. Все элементы кроме верхнего и нижнего уровней обладают как командными, так и подчиненными функциями управления.

Иерархические структуры представляют собой декомпозицию системы в пространстве. Все вершины (узлы) и связи (дуги, ребра) существуют в этих структурах одновременно (не разнесены во времени).

Иерархические структуры, в которых каждый элемент нижележащего уровня подчинен одному узлу (одной вершине) вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами (структурами типа «дерева»; структурами, на которых выполняются отношения древесного порядка, иерархическими структурами с сильными связями) (рис 14, а).

Структуры, в которых элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего уровня, называют иерархическими структурами со слабыми связями (рис 14, б).

В виде иерархических структур представляются конструкции сложных технических изделий и комплексов, структуры классификаторов и словарей, структуры целей и функций, производственные структуры, организационные структуры предприятий.

В общем случае термин иерархия шире, он означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим, возник как наименование «служебной лестницы» в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т.д., затем концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.

Таким образом, в иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и компонентами в пределах уровня могут быть любые взаимоотношения. В соответствии с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо.

Источник

Многим знакома фраза из фильма Эндрю и Лоуренса Вачовски: «Матрица — это система. Она и есть наш враг». Однако стоит разобраться в понятиях, терминах, а также в возможностях и свойствах системы. Так ли она страшна, как ее представляют во многих фильмах и литературных произведениях? О характеристиках и свойствах системы и примерах их проявления пойдет речь в статье.

Читайте также:  Какие свойства имеет лук

Значение термина

Слово «система» греческого происхождения (σύστημα), обозначающее в дословном переводе целое, состоящее из соединенных частей. Однако понятие, скрывающееся под этим термином, гораздо многограннее.

Хотя в современной жизни практически все вещи рассматриваются как функциональные системы, нельзя дать единственно правильное определение этому понятию. Как ни странно, происходит это из-за проникновения теории систем буквально во все сферы жизнедеятельности человека.

Еще в начале двадцатого века велись дискуссии о различии свойств линейных систем, исследуемых в математике, логике, от особенностей живых организмов (примером научной обоснованности в данном случае является теория функциональных систем П. К. Анохина). На современном этапе принято выделять ряд значений этого термина, которые образуются в зависимости от анализируемого объекта.

В двадцать первом веке появилось более подробное объяснение греческого термина, а именно: «целостность, состоящая из элементов, которые связаны между собой и находятся в определенных отношениях». Но это общее описание значения слова не отражает свойств системы, анализируемой наблюдателем. В связи с этим понятие будет приобретать новые грани толкования в зависимости от рассматриваемого объекта. Неизменными останутся лишь понятия целостности, основных свойств системы и ее элементов.

системные свойства классификация систем

Элемент как часть целостности

В теории систем принято рассматривать целое как взаимодействие и отношения определенных элементов, которые, в свою очередь, являются единицами с определенными свойствами, не подлежащими дальнейшему членению. Параметры рассматриваемой части (или свойства элемента системы), как правило, описываются при помощи:

  • функций (выполняемые рассматриваемой единицей действия в рамках системы);
  • поведения (взаимодействие с внешней и внутренней средой);
  • состояния (условие нахождения элемента с измененными параметрами);
  • процесса (смена состояний элемента).

Стоит обратить внимание на то, что элемент системы не равнозначен понятию «элементарность». Все зависит от масштабов и сложности рассматриваемого объекта.

Если обсуждать систему свойств человека, то элементами будут выступать такие понятия, как сознание, эмоции, способности, поведение, личность, которые, в свою очередь, сами могут быть представлены как целостность, состоящая из элементов. Из этого следует вывод, что элемент может рассматриваться как субсистема рассматриваемого объекта. Начальным этапом в системном анализе и является определение состава «целостности», то есть уточнение всех входящих в нее элементов.

Связи и ресурсы как системообразующие свойства

Любые системы не находятся в изолированном состоянии, они постоянно взаимодействуют с окружающей средой. Для того чтобы вычленить какую-либо «целостность», следует выявить все связи, объединяющие элементы в систему.

Что такое связи и как они влияют на свойства системы.

Связь – взаимная зависимость элементов на физическом или смысловом уровне. По значимости можно выделить следующие связи:

  1. Строения (или структурные): характеризуют в основном физическую составляющую системы (например, благодаря меняющимся связям углерод может выступать как графит, как алмаз или как газ).
  2. Функционирования: гарантируют работоспособность системы, ее жизнедеятельность.
  3. Наследования: случаи, когда элемент «А» является источником для существования «В».
  4. Развития (конструкционные и деструкционные): имеют место либо в процессе усложнения структуры системы, либо наоборот – упрощения или распада.
  5. Организационные: к ним можно отнести социальные, корпоративные, ролевые. Но наиболее интересной группой являются связи управления как позволяющие контролировать и направлять развитие системы в определенное русло.

Наличие тех или иных связей обусловливает свойства системы, отображает зависимости между конкретными элементами. Так же можно проследить использование ресурсов, необходимых для построения и функционирования системы.

общие свойства систем

Каждый элемент изначально снабжен определенными ресурсами, которые он может передавать иным участникам процесса или обменивать их. Причем обмен может происходить как внутри системы, так и между системой и внешней средой. Классифицировать ресурсы можно следующим образом:

  1. Материальные – представляют собой объекты материального мира: склады, товары, устройства, станки и т. д.
  2. Энергия – сюда включаются все виды, известные на современном этапе развития науки: электрическая, ядерная, механическая и т. д.
  3. Информация.
  4. Человеческие – человек выступает не только как работник, выполняющий некоторые операции, но и как источник интеллектуальных фондов.
  5. Пространство.
  6. Время.
  7. Организационные – в данном случае структура рассматривается как ресурс, недостаток которого может привести даже к распаду системы.
  8. Финансовые – для большинства организационных структур являются основополагающими.

Уровни систематизации в теории систем

Поскольку системы обладают определенными свойствами и признаками, их можно подвергнуть классификации, целью которой является выбор соответствующих подходов и средств описания целостности.

Согласно содержательному принципу деления, различают реальные и абстрактные системы. Для удобства восприятия информацию представим в виде таблицы.

Системы

РеальныеАбстрактные
ЕстественныеИскусственныеНепосредственного отображенияГенерализующие
ФизическиеТехническиеМатематические моделиКонцептуальные модели
БиологическиеСоциальныеЛогико-эвристические моделиЯзыки
Организационно-технические

Основные критерии типизации систем

Существует категоризация относительно взаимодействия с внешней средой, структуры и пространственно-временных характеристик. Оценку функциональности систем можно производить по следующим критериям (см. таблицу).

Критерии

Классы

Взаимодействие с внешней средой

Открытые – взаимодействующие с внешней средой

Закрытые – проявляющие резистентность по отношению к воздействию внешней среды

Комбинированные – содержат оба вида подсистем

Структура целостности

Простые – включающие небольшое количество элементов и связей

Сложные – характеризуются неоднородностью связей, множественностью элементов и разнообразием структур

Большие – отличаются множественностью и разнородностью структур и подсистем

Выполняемые функции

Специализированные – узкая специализация

Многофункциональные – структуры, выполняющие несколько функций одновременно

Универсальные (например, комбайн)

Развитие системы

Стабильные – структура и функции неизменны

Развивающиеся – имеют высокую сложность, подвергаются структурным и функциональным изменениям

Организованность системы

Хорошо организованные (можно обратить внимание на свойства информационных систем, для которых характерны четкая организация и ранжированность)

Плохо организованные

Сложность поведения системы

Автоматические – запрограммированный ответ на внешнее воздействие с последующим возвращением к гомеостазу

Решающие – основаны на постоянных реакциях на внешние раздражители

Самоорганизующиеся – гибкие реакции на внешние раздражители

Предвидящие – превосходят внешнюю среду по сложности организации, способна предвидеть дальнейшие взаимодействия

Превращающиеся – сложные структуры, не связанные с вещественным миром

Характер связи между элементами

Детерминированные – состояние системы может быть предсказано для любого момента

Стохастические – их изменение носит случайный характер

Структура управления

Централизованные

Децентрализованные

Назначение системы

Управляющие – свойства системы управления сводятся к регулированию информационных и иных процессов

Производящие – характеризуются получением продуктов или услуг

Обслуживающие – поддержка работоспособности систем

Группы свойств системы

Свойством принято называть некоторые характерные признаки и качества элемента или целостности, которые проявляются при взаимодействии с иными объектами. Можно выделить группы свойств, характерные практически для всех существующих общностей. Всего известно двенадцать общих свойств систем, которые разделены на три группы. Информацию смотрите в таблице.

Свойства системы

Статические

Динамические

Синтетические

Целостность

Функциональность

Эмерджентность

Открытость

Стимулируемость

Неделимость на части

Внутренняя неоднородность систем

Изменчивость системы со временем

Ингерентность

Структурированность

Существование в изменяющейся среде

Целесообразность

Читайте также:  Укажите какое свойство не является свойством информации как объекта

Группа статических свойств

Из названия группы вытекает, что система обладает некоторыми особенностями, которые присущи ей всегда: в любой определенный промежуток времени. То есть это те характеристики, без обладания которыми общность перестает быть таковой.

Целостность – это свойство системы, которое позволяет выделить ее из окружающей среды, определить границы и отличительные черты. Благодаря ему возможно существование устоявшихся связей между элементами в каждый выделенный момент времени, которые позволяют реализовать цели системы.

Открытость – одно из свойств системы, основанное на законе взаимосвязи всего существующего в мире. Суть его в том, что можно найти связи между любыми двумя системами (как входящие, так и выходящие). Как можно заметить, при детальном рассмотрении эти взаимодействия различны (или несимметричны). Открытость свидетельствует о том, что система не существует изолированно от среды и производит обмен ресурсами с ней. Описание этого свойства обычно называют «моделью черного ящика» (со входом, который обозначает влияние среды на целостность, и выходом – влиянием системы на среду).

Внутренняя неоднородность систем. В качестве наглядного примера подойдет рассмотрение свойств нервной системы человека, устойчивость которой обеспечивается многоуровневой, разнородной организацией элементов. Принято рассматривать три основные группы: свойства мозга, отдельных структур нервной системы и конкретных нейронов. Информация о составных частях (или элементах) системы позволяет составить карту иерархических связей между ними. Следует обратить внимание, что в данном случае рассматривается «различимость» частей, а не их «разделимость».

свойства элемента системы

Трудности определения состава системы заключаются в целях исследования. Ведь один и тот же объект можно рассмотреть с точки зрения его ценности, функциональности, сложности внутреннего устройства и т. д. Вдобавок ко всему, большую роль играет умение наблюдателя находить различия элементов системы. Поэтому модель стиральной машины у продавца, технического работника, грузчика, ученого будет абсолютно иной, поскольку перечисленные люди рассматривают ее с разных позиций и с разными установленными целями.

Структурированность – свойство, описывающее взаимосвязи и взаимодействия элементов внутри системы. Связи и отношения элементов составляют модель рассматриваемой системы. Благодаря структурированности поддерживается такое свойство объекта (системы), как целостность.

Группа динамических свойств

Если статические свойства — это то, что можно наблюдать в любой отдельно взятый момент времени, то динамические относятся к разряду подвижных, то есть проявляющихся во времени. Это изменения состояния системы на протяженности определенного отрезка времени. Наглядным примером может служить смена времен года на каком-либо наблюдаемом участке или улице (статические свойства остаются, но видны воздействия динамических). Какие свойства системы относятся к рассматриваемой группе?

Функциональность – определяется воздействием системы на среду. Характерной особенностью является субъективность исследователя в выделении функций, продиктованная поставленными целями. Так, автомобиль, как известно, является «средством передвижения» — это его основная функция для потребителя. Однако покупатель при выборе может руководствоваться и такими критериями, как надежность, комфортность, престижность, дизайн, а также наличие сопутствующих документов и т. д. В данном случае раскрывается многофункциональность такой системы, как машина, и субъективность приоритетов функциональности (поскольку будущий водитель выстроил свою систему главных, второстепенных и незначительных функций).

Стимулируемость – проявляется повсеместно как адаптирование к внешним условиям. Ярким примером являются свойства нервной системы. Воздействие внешнего раздражителя или среды (стимула) на объект способствует изменению или коррекции поведения. Этот эффект подробно описал в своих исследованиях Павлов И. П., а в теории системного анализа он называется стимулируемостью.

свойства нервной системы

Изменчивость системы со временем. Если система функционирует, неизбежны изменения как во взаимодействии со средой, так и в осуществлении внутренних связей и отношений. Можно выделить следующие виды изменчивости:

  • скоростные (быстрые, медленные и т. д.);
  • структурные (изменение состава, структуры системы);
  • функциональные (замена одних элементов другими или изменение их параметров);
  • количественные (увеличение количества элементов структуры не изменяющие ее);
  • качественные (в этом случае изменяются свойства системы при наблюдаемом росте или упадке).

Характер проявления перечисленных изменений может быть различен. Обязательным является условие учета данного свойства при анализе и планировании системы.

Существование в изменяющейся среде. Как система, так и среда, в которой она находится, подвержены изменениям. Для функционирования целостности следует определиться с соотношением скорости изменений внутренних и внешних. Они могут совпадать, могут различаться (опережение или отставание). Важно правильно определить соотношение с учетом особенностей системы и окружающей среды. Наглядным примером может служить вождение автомобиля в экстремальных условиях: водитель действует либо на опережение, либо в соответствии с обстановкой.

свойства линейных систем

Группа синтетических свойств

Описывает отношения системы и среды с точки зрения общего понимания целостности.

Эмерджентность – слово английского происхождения, переводится как «возникать». Термином обозначают появление некоторых свойств, которые проявляются только в системе благодаря наличию связей определенных элементов. То есть речь идет о возникновении свойств, которые нельзя объяснить суммой свойств элементов. Например, детали автомобиля ездить и тем более осуществлять перевозки не в состоянии, но собранные в систему – способны быть средством передвижения.

Неразделимость на части – это свойство, по логике вещей, вытекает из эмерджентности. Удаление какого-либо элемента из системы сказывается на ее свойствах, внутренних и внешних связях. В то же время элемент, «отправленный в свободное плавание», приобретает новые свойства и перестает быть «звеном цепи». Например, шина автомобиля на территории бывшего СССР частенько появляется на клумбах, спортивных площадках, «тарзанках». Но изъятая из системы автомобиля, она утеряла свои функции и стала совершенно иным объектом.

свойства объекта система

Ингерентность – английский термин (Inherent), который переводится как «неотъемлемая часть чего-либо». От степени «включенности» элементов в систему зависит выполнение ею возложенных на нее функций. На примере свойств элементов в периодической системе Менделеева можно удостовериться в важности учета ингерентности. Так, период в таблице строится исходя из свойств элементов (химических), в первую очередь заряда ядра атома. Свойства периодической системы вытекают из ее функций, а именно классификация и упорядочение элементов с целью предсказания (или нахождения) новых звеньев.

Целесообразность – любая искусственная система создается с определенной целью, будь то решение какой-либо проблемы, развитие заданных свойств, выпуск требуемой продукции. Именно цель диктует выбор структуры, состава системы, а также связей и отношений между внутренними элементами и внешней средой.

свойства информационных систем

Заключение

В статье изложены двенадцать системных свойств. Классификация систем, однако, гораздо разнообразнее и проводится в соответствии с целью, которую преследует исследователь. Каждая система обладает свойствами, которые отличают ее от множества других общностей. Кроме того, перечисленные свойства могут проявляться в большей или меньшей степени, что продиктовано внешними и внутренними факторами.

Источник