Какие бывают свойства чисел 2 класс

Какие бывают свойства чисел 2 класс thumbnail

Ниже приведены характеристики чисел с примерами, которые рассматривает сайт aboutnumber.ru

Сумма цифр

Сумма цифр, из которых состоит число.

62316 → 6 + 2 + 3 + 1 = 18

Произведение цифр

Произведение цифр, из которых состоит число.

872 → 8 * 7 * 2 = 112

Количество цифр в числе

Отображение количества цифр в числе (если их больше 4-х). Это удобно, так как не всегда можно на глаз определить
порядок числа.

57348920572348 → 14

Все делители числа

Полный список делителей, на которые делится число без остатка.

2612 → 1, 2, 4, 653, 1306, 2612

Наибольший делитель из ряда степеней двойки

Ряд степеней двойки — это ряд вида 1, 2, 4, 8, 16, 32, 64, 128, 256 и т.д.
Эти числа являются основными числами в бинарной математике (в двоичной записи), так как ими можно охарактеризовать
объем
информации.

832 → 64

Количество делителей

Суммарное число делителей.

3638143886 → всего 32 делителя

Сумма делителей

Сумма всех делителей числа.

77432243032 → сумма делителей 145185455700

Простое число

Проверка на простое число. Простое число — это число, которое делится без остатка только на единицу и само себя.
Таким образом у простого числа может быть всего два делителя.

677 → 1 * 677

Полупростое число

Проверка на полупростое число. Полупростое число — число, которое можно представить в виде произведения двух простых чисел.
У полупростого числа два делителя — оба простые числа.

898 → 2 * 449

Обратное число

Два числа называются обратными если их произведение равно единице. Таким образом обратным к заданному числу N всегда
будет 1/N.

125 → 0.008

Проверка: 0.008 * 125 = 1

Факторизация

Факторизация числа — представление числа в виде произведения простых чисел.

220683351 → 3 * 7 * 953 * 11027

Двоичный вид

Двоичное, оно же бинарное представление числа. Это запись числа в системе счисления с основанием два.

72412810 → 101100001100101000002

Троичный вид

Троичное представление числа. Это запись числа в системе счисления с основанием три.

990418010 → 2001220112221113

Восьмеричный вид

Восьмеричное представление числа. Это запись числа в системе счисления с основанием восемь.

9788143604410 → 13312140276148

Шестнадцатеричный вид (HEX)

Шестнадцатеричное представление числа. Часто его пишут английскими буквами «HEX». Это запись числа в системе
счисления с основанием шестнадцать.

12444510 → 1E61D16

Перевод из байтов

Конвертация из байтов в килобайты, мегабайты, гигабайты и терабайты.

29141537 (байт) → 27 мегабайтов 810 килобайтов 545 байтов

Цвет

В случаем, если число меньше чем 16777216, то его можно представить в виде цвета. Шестнадцать миллионов цветов,
которые можно
закодировать стандартной цветовой схемой компьютера.

8293836 →

RGB(126, 141, 204) или #7E8DCC

Наибольшая цифра в числе (возможное основание)

Наибольшая цифра, встречающаяся в числе. В скобках указана система счисления, с помощью которой, возможно, записано
это число.

347524172 → 7 (8, восьмеричный вид)

Перевод двоичной/троичной/восьмеричной записи в десятичную

Число, записанное с помощью единиц и нолей — имеет бинарный вид, таким образом его можно перевести в
десятичную систему счисления.

Число, записанное с помощью единиц, нолей и двоек — имеет троичный вид.

Если с помощью цифр до семи (включая) — восьмеричный вид числа.

111010010010112 → 1492310

120201001200213 → 278227610

745312768 → 1590547010

Число Фибоначчи

Проверка на число Фибоначчи. Числа Фибоначчи — это последовательно чисел, в которых каждый последующий элемент равен
сумме двух предыдущих.

Ряд Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Позиция в ряду Фиббоначчи

Характеризует порядковый номер числа в ряду Фибоначчи.

21 → 8-е число в ряду Фибоначчи

Нумерологическое значение

Нумерологическое значение вычисляется путем последовательного сложения всех цифр числа до тех пор, пока не
не получится цифра от 0 до 9. В нумерологии каждой цифре соответствует свой характер.

8372890 → 8 + 3 + 7 + 2 + 8 + 9 + 0 = 37 → 3 + 7 = 10 → 1 + 0 = 1
мужество, логика, независимость, самостоятельность, индивидуализм, смелость, решительность, изобретательность

Синус числа

Расчет тригонометрической функции синуса числа в радианах.

Sin(18228730686) = -0.20084127807633853

Косинус числа

Расчет тригонометрической функции косинуса числа в радианах.

Cos(792834113) = 0.6573990013186783

Тангенс числа

Расчет тригонометрической функции тангенса числа в радианах. Чтобы получить котангенс числа, надо единицу поделить на
величину тангенса.

Tan(651946045) = 2.5709703278560982

Натуральный логарифм

Это логарифм числа по основанию константы e ≅ 2,718281828459.

Ln(7788338399) = 22.77589337484777

Десятичный логарифм

Это логарифм числа по основания десять.

LOG(1010432) = 6.004507091707365

Квадратный корень

Квадратный корень из введенного числа.

8512326 → 2917.589073190397

Кубический корень

Кубический корень из введенного числа.

5834788 → 180.02867855810877

Квадрат числа

Число, возведенное в квадрат, то есть умноженное само на себя.

31203^2 = 973627209

Перевод из секунд

Конвертация числа секунд в дни, часы, минуты и секунды.

1805506 (секунд) → 2 недели 6 дней 21 час 31 минута 46 секунд

Дата по UNIX-времени

UNIX-время или UNIX-дата — количество секунд, прошедших с полуночи 1 января 1970 года (по UTC).
Таким образом введенное число можно преобразовать в дату.

5265079917115 → Sun, 04 Nov 2136 10:11:57 GMT

Римская запись

Римская запись числа, в том случае, если оно меньше чем максимальное для римской записи 3999.

2014 → MMXIV

Индо-арабское написание

Запись числа с помощью индо-арабских цифр. Они используются в арабских странах Азии и в Египте.

24579540882896 → ٢٤٥٧٩٥٤٠٨٨٢٨٩٦

Азбука морзе

Число, закодированное с помощью азбуки морзе, каждый символ которой представляется в виде последовательсти
коротких (точка) и длинных (тире) сигналов.

7282077 → —… ..— —.. ..— —— —… —…

MD5

Хэш-сумма числа, рассчитанная по алгоритму MD5.

4706204202547 → db2766a5747fd3f8c8c77a1ddd2e24d0

SHA1

Хэш-сумма числа, рассчитанная по алгоритму SHA-1.

345297 → 3855120d2f9d556544bbd24746d0877b79a023df

Base64

Представление числа в системе Base64, то есть в системе счисления с основанием 64.

78868 → SmF2YVNjcmlwdA==

QR-код числа

Двумерный штрих-код-картинка. В ней зашифровано введенное число.

969393779 →

Источник

Свойства чисел в духовной нумерологии — особая тема, пожалуй даже одна из ключевых! Досконально знать смысл того или иного числа, не принимая в расчёт общих свойств чисел, это то же самое, что догадываться о существовании солнца, но не видеть его света и не чувствовать его тепла.

Свойства чисел в нумерологии

Итак, свойства чисел в духовной нумерологии. Существуют общие свойства чисел (такие свойства в равной мере присущи абсолютно всем числам). А есть уникальные свойства отдельно взятых, конкретных чисел — свойства, применимые исключительно(!) для них.

Знание свойств чисел в нумерологии судьбы человека помогает расставить правильные акценты. Причём не только для решения жизненных проблем, но и для их предотвращения в зародыше.

Духовная нумерология различает следующие свойства чисел:

  1. постоянные свойства;
  2. переменные свойства;

В нашей жизни настолько же всё меняется, насколько постоянно. Так, например, мы рождаем детей с разными характерами, внешностью, именами и судьбами. А суть остаётся неизменной — продолжение рода. Мы строим разные машины, велосипеды, поезда, самолёты, корабли. И снова суть та же — средство передвижения.

Это касается вообще всех сфер Мироздания: всё меняется и всё остаётся неизменным. Причём изменения не противоречат постоянству! Без ясного осознания данного факта немыслимо применение духовной нумерологии к анализу человеческой судьбы (в том числе анализу даты рождения человека).

Естественно, что свойства чисел, зеркально отражающие нашу с вами действительность, выражают ту же незыблемую эзотерическую истину: постоянство внутри перемен и перемены внутри постоянства. Всё очень просто.
Язык чисел испокон веков воплощал в себе основополагающие законы Жизни.
 

Общие свойства чисел в нумерологии

К общим свойствам чисел относится то, что все они обладают сознанием. Да-да, не удивляйтесь, именно сознанием! Только в отличие от человеческого сознания, сознание чисел неизменно и постоянно.

Возьмите любое случайное число: 9, 7, 10, 23, 40 или 100 — любое! Каждое из них на протяжении всей истории человечества влияло на людей совершенно одинаково. Сознанию чисел абсолютно всё равно кто перед ним: необузданный дикарь, йог, в совершенстве владеющий своими страстями, или учёный разработчик сверхсложных космических технологий. 

И йога и учёного, и дикаря сознание чисел цинично и бесцеремонно приводит к «общему знаменателю», заставляя их делать одни и те же вещи: врать, бояться, любить, надеяться, верить… И хотя каждый из них будет делать это по-своему, суть останется неизменной — враньё, страх, любовь, надежда, вера.

Это я к тому, что сколь бы мы ни отличались друг от друга — полом, внешностью, умом, судьбой, характером, здоровьем, — числа могут вызывать в нас одни и те же реакции на вызовы Жизни. Эти реакции безусловно будут отличаться друг от друга, но только на физическом, внешнем уровне человеческого бытия. А по сути останутся теми же: враньём, страхом, ненавистью, жаждой наживы и так далее.

Как видите, духовная нумерология, анализируя свойства чисел, учит смотреть в корень, выхватывая самую суть происходящего, а не акцентировать внимание на условных внешних различиях между нами. Таковые различия кажутся очень важными нам! Но для сознания чисел они (различия) — не более чем шелуха, которую необходимо отбросить, чтобы добраться до плода «познания добра и зла»…
 

Уникальные свойства чисел в нумерологии

Когда ко мне обращаются люди с просьбой сделать подробный анализ их дат рождения, я обязан учитывать особенные и уникальные свойства каждого числа. Ведь любое число в духовной нумерологии обладает своим, если так можно выразиться, характером, своими уникальными, неповторимыми качествами. Что я имею в виду?

Допустим человек родился 19-го числа (не буду сейчас упоминать какого месяца и года, чтобы вас не путать). 19 с языка чисел переводится как «стремление к духовному совершенству». Но поскольку к духовному совершенству могут вести миллионы путей (зачастую неведомых нам), это число даёт человеку беспрецедентную свободу выбора.

Даже если этот выбор — кажущийся, иллюзорный, мнимый, тем не менее он есть! И он дарит иллюзию свободы, а значит надежду на благополучный исход из  даже самой безвыходной ситуации! То есть, число 19 не запирает человека в какие-то жёсткие рамки поведения, а даёт беспрецедентную «свободу выбора».

Конечно, с точки зрения духовной нумерологии любая свобода выбора — не более, чем сладкая иллюзия. Но согласитесь, лучше съесть во сне сладкую булочку, чем вскочить посреди ночи с криком ужаса от только что привидевшегося кошмара!

Чтобы научиться понимать язык чисел, мало знать их смысл. Необходимо усвоить, как определённое число будет себя с вами вести: станет ли жёстко требовать линии поведения, соответствующей его смыслу, или примется мягко настаивать на соблюдении определённых моральных норм. Иные числа мудро и незаметно направляют человека в желаемое русло.

У каждого числа свой неповторимый характер. Двойка, например, на редкость твердолоба. Смысл числа 2 — принципиальность, ограниченность суждений. Для двойки Бога нет. Её бог — какой-нибудь громогласный девиз типа «Да здравствует победа над тунеядством и попустительством!».

И свойство (характер) числа 2 таково, что оно будет жёстко настаивать и требовать от человека незамедлительного выбора: «да или нет»! Никаких колебаний! Никакого времени на раздумье! Зачем думать? О чём? Для чего? Сомнения для слабаков. Сделай выбор и нечего рассусоливать канитель!

Двойка — это не восьмёрка, сглаживающая острые углы. Характер (свойство) числа 8 — мягкий, обволакивающий. Восьмёрка щадит наши идеалы и чувства, и до бесконечности готова ждать, пока человек что-то наконец осознает и соблаговолит принять к сведению её смысл. А смысл числа 8 — сама Вечность. Забавно, что при всей мудрости этого числа, оно даже понятия не имеет, что такое Время.

Понятно, что невозможно в одной статье охватить характер всех чисел. Цель её написания в том, что я хотел донести до своих читателей очень важную мысль: чтобы овладеть языком чисел, недостаточно знать их смысл. Нужно понимать их характер и уметь настраиваться на его особенности. Только так числа можно превратить в своих самых надёжных союзников в решении жизненных задач!

———————————————————————————————

Какие бывают свойства чисел 2 класс

Обратите внимание!

В магазины уже поступила моя книга под названием «Духовная нумерология. Язык чисел». На сегодняшний день это самое полное и востребованное из всех существующих эзотерических пособий о смысле чисел. Подробнее об этом, а также для заказа книги пройдите по следующей ссылке: «Духовная нумерология книга«

С теплом, автор книги и этого сайта Иосиф Лазарев

———————————————————————————————

Источник

Изучение чисел традиционно начинается с натуральных чисел. Это числа вида то есть те числа, которые используются человеком для счёта.

В арифметике над натуральными числами вводятся операции сложения, вычитания, умножения и деления. Но операции вычитания и деления оказываются не всегда возможными для натуральных чисел.

Натуральные числа

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

Пример:

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

Итак:

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Пример:

  • 28+63=91

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик.

Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды.

Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Пример:

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Вычитание натуральных чисел

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

  1. 74–18=56
  2. Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом.

Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Пример:

  • 21–21=0

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Пример:

  • 38–0=38

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов.

Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10.

Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме.

При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают.

При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примеры:

Числа и их свойства
Числа и их свойства

Деление натуральных чисел

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Пример:

  • 48:6=8

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него.

Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным.

Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Пример:

  • 38:7

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

Источник: https://spadilo.ru/naturalnye-chisla/

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд, который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в 1891 г. Д.Пеано:

  • Единица- натуральное число, которое не следует ни за каким натуральным числом.
  • За каждым натуральным числом следует одно и только одно число
  • Каждое натуральное число, отличное от 1, следует за одним и только одним натуральным числом
  • Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Ничего непонятно?

Если запись натурального числа состоит из одной цифры его называют однозначным (например, 2,6.9 и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

Переместительное свойство: a+b=b+a

Сумма не изменяется при перестановке слагаемых.

Сочетательное свойство: a+ (b+c) =(a+b) +c

Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое.

От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

Свойство вычитания суммы из числа a-(b+c) =a-b-c если b+c ≤ a

Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое.

Свойство вычитания числа из суммы (a+b) -c=a+(b-c)$, если $c ≤ b

Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое.

Если из числа вычесть нуль, то число не изменится.

Если из числа вычесть его само, то получится нуль.

Свойства умножения

Переместительное acdot b=bcdot a

Произведение двух чисел не изменяется при перестановке множителей.

Сочетательное acdot (bcdot c)=(acdot b)cdot c

Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.

При умножении на единицу произведение не изменяется $mcdot 1=m$

При умножении на нуль произведение равно нулю. Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо.

Свойства умножения относительно сложения и вычитания

Распределительное свойство умножения относительно сложения:

    • (a+b)cdot c=ac+bc

Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения.

Например, 5(x+y)=5x+5y

Распределительное свойство умножение относительно вычитания:

    1. (a-b)cdot c=ac-bc

Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе.

Например, 5(x-y)=5x-5y

Сравнение натуральных чисел

  1. Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a
  2. Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.
  3. если $aПример 1Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $aРешение: На основании указанного свойства ,т.к. по условию $a
  4. в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее числоПодмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества
  5. если a
  6. Если c

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна ,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлении числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра 0

При округлении числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра 0. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число 564 до десятков то получим, что округлить его можно с недостатком и получить 560, или с избытком и получить 570.

Правило округления натуральных чисел

Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

Все цифры, расположенные правее разряда, до которого округляют число ,заменяют нулями

Источник: https://spravochnick.ru/matematika/delimost_chisel/naturalnye_chisla_i_ih_svoystva/

Совершенные числа

Числа и их свойства

Математика – это не только куча уже известных формул, типовых решений и задач. Помимо школьного курса есть математические загадки, которые пока никому не удалось разгадать. Одной из таких загадок являются совершенные числа.

Совершенное число – это числа, сумма делителей которого равняется этому числу. Имеются в виду только те числители, что меньше самого числа. Наименьшим совершенным числом является число 6. Простые делители 6: 1,2,3 – если их сложить то получится все тоже число 6.

Совершенными числами впервые заинтересовались древнегреческие математики. Они были увлечены идеей простого числа. Так, второе простое число было обнаружено Пифагором, который полагал, что обнаружив закономерность, по которой образуются простые числа, можно вывести идеальное имя человека. Это была идея всех математиков того времени.

Первым, кто попытался вывести подобную зависимость научным путем, был Евклид, в своих трудах он указывал на некоторые признаки совершенных чисел. Однако, несмотря на все труды математиков всех времен и народов, обнаружить формулу совершенного числа до сих пор не удалось

Это удивительно, но ни одна из предложенных формул совершенных чисел не дает возможности определить следующее по порядку совершенное число. Все, что может предложить современная математика: бесконечный перебор вариантов.

Да, тяжело в это поверить, но открытых совершенных чисел не так много. Так последнее на данный момент, 50 число было открыто всего в 2018 году с помощью вычислений сверхмощного компьютера.

Зачем же нужны компьютеры для простого перебора чисел? Ну, как минимум, это ускоряет расчет в десятки тысяч раз. Но помимо этого есть и еще одна причина. Дело в том, что чем каждое следующее совершенное число в разы больше предыдущего, что еще больше усложняет выведение формулы числа и нахождение следующих чисел ряда.

Так, первое число из списка совершенных чисел мы знаем: 6. Следующее: 48, далее идет 896. А вот в 24 числе уже 12000 знаков. По мере роста натуральных чисел, совершенные числа встречаются все реже.

Большую часть совершенных чисел нашли уже в современности. Огромное 24 число было найдено в 1956 году с использованием ЭВМ. На сегодняшний день таких в список совершенных чисел входит 50 значений.

Особых свойств совершенные числа не имеют, но есть интересные закономерности. Интересно, что практически каждая закономерность имеет свои исключения, а потому не может быть использована для выведения общей для всех совершенных чисел формулы.

Например, совершенные числа являются суммой кубов последовательных чисел. Однако под это свойство не попадает число 6 и так далее. Практически каждое свойство имеет свое исключение, кроме двух.

Так, сумма обратных чисел простых делителей совершенного числа всегда равна 2. А так же до сих пор не найдено ни одно нечетное совершенное число. Возможно это связано с моделью поиска, а может быть дело в том, что все совершенные числа: четные.

Мы поговорили о том, что такое совершенные числа. Рассказали, сколько всего совершенных чисел найдена, чем затруднен поиск новых чисел, а также привели несколько интересных свойств совершенных чисел.

Источник: https://obrazovaka.ru/matematika/sovershennye-chisla-spisok.html

Действительные числа: определение, примеры, представления

Определение действительных чисел

Целые и дробные числа вместе составляют рациональные числа. В свою очередь, рациональные и иррациональные числа составляют действительные числа. Как дать определение, что такое действительные числа?

Действительные числа — это рациональные и иррациональные числа. Множество действительных чисел обозначается через R.

Данное определение можно записать иначе с учетом следующего:

  1. Рациональные числа можно представить в виде конечной десятичной дроби или бесконечной периодической десятичной дроби.
  2. Иррациональные числа представляют собой бесконечные непериодические десятичные дроби.

Действительные числа — числа, которые можно записать в виде конечной или бесконечной (периодической или непериодической) десятичной дроби.

Действительные числа — это любые рациональные и иррациональные числа. Приведем примеры таких чисел: 0; 6; 458; 1863; 0,578; -38; 265; 0,145(3); log512.

Нуль также является действительным числом. Согласно определению, существуют как положительные, так и отрицательные действительные числа. Нуль является единственным действительным числом, которое не положительно и не отрицательно.

Еще одно название для действительных чисел — вещественные числа. Эти числа позволяют описывать значение непрерывно меняющейся величины без введения эталонного (единичного) значения этой величины.

Координатная прямая и действительные числа

Каждой точке не координатной прямой соответствует определенное и единственное действительное число. Иными словами, действительные числа занимают всю координатную прямую, а между точками кривой и числами присутствует взаимно-однозначное соответствие.

Представления действительных чисел

Под определение дейситвительных чисел попадают:

  1. Натуральные числа.
  2. Целые числа.
  3. Десятичные дроби.
  4. Обыкновенные дроби.
  5. Смешанные числа.

Также действительные числа часто представляются в виде выражений со степенями, корнями и логарифмами. Сумма, разность произведение и частное действительных чисел также являются действительными числами.

Значение любого выражения, составленного из действительных чисел, также будет являться действительным числом.

Например, значения выражений sin23π·e-285·10log32 и tg676693-8π32  — действительные числа.

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/dejstvitelnye-chisla/

Источник