Какая величина определяет резонансные свойства контура

Какая величина определяет резонансные свойства контура thumbnail

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный.

Основная радиоэлементная база колебательного контура: Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ωр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R2+XΣ2), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и .Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) WL = (LI2)/2 и конденсатором (энергия электрического поля) WC=(CU2)/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I2R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Читайте также:  Какие свойства имеет кошачий глаз

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Читайте также:  Опишите в чем состоит процесс обучения и какие свойства

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток , превосходящий по величине ток во внешней цепи I в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Видео по теме: Колебательный контур

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 января 2020;
проверки требуют 2 правки.

Колебательный контур — электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном — параллельным[1].

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.

Резонансная частота контура определяется так называемой формулой Томсона:

Принцип действия[править | править код]

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе, составляет

Параллельный колебательный контур

Осциллограмма LC-контура во время замыкания заряженного конденсатора на катушку индуктивности.
С — 240 нФ (заряженный)
L — 360 нГн
F0 ≈ 542 кГц

При соединении конденсатора с катушкой индуктивности в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

где  — индуктивность катушки,  — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть зарядка конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор в этом случае снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

Описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи больше тока, проходящего через весь контур, причём эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Читайте также:  В какое значение можно установить свойство серии кодов

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Математическое описание процессов[править | править код]

Напряжение на идеальной катушке индуктивности при изменении протекающего тока:

Ток, протекающий через идеальный конденсатор, при изменении напряжения на нём:

Из правил Кирхгофа, для цепи, составленной из параллельно соединённых конденсатора и катушки, следует:

 — для напряжений,

и

 — для токов.

Совместно решая систему дифференциальных уравнений (дифференцируя одно из уравнений и подставляя результат в другое), получаем:

Это дифференциальное уравнение гармонического осциллятора с циклической частотой собственных колебаний (она называется собственной частотой гармонического осциллятора).

Решением этого уравнения 2-го порядка является выражение, зависящее от двух начальных условий:

где  — некая постоянная, определяемая начальными условиями, называемая амплитудой колебаний,  — также некоторая постоянная, зависящая от начальных условий, называемая начальной фазой.

Например, при начальных условиях и амплитуде начального тока решение сведётся к:

Решение может быть записано также в виде

где и  — некоторые константы, которые связаны с амплитудой и фазой следующими тригонометрическими соотношениями:

Комплексное сопротивление (импеданс) колебательного контура[править | править код]

Колебательный контур может быть рассмотрен как двухполюсник, представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как

где i — мнимая единица.

Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).

Эта частота равна

и совпадает по значению с собственной частотой колебательного контура.

Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. Однако выбор соотношения между L и C зачастую не бывает полностью произвольным, так как обуславливается требуемым значением добротности контура.

Для последовательного контура добротность растёт с увеличением L:

где R — активное сопротивление контура.
Для параллельного контура:

где , ( — сумма активных сопротивлений в цепи катушки и цепи конденсатора[2]).

Понятие добротности связано с тем, что в реальном контуре существуют потери энергии (на излучение[3] и нагрев проводников). Обычно считают, что все потери сосредоточены в некотором эквивалентном сопротивлении , которое в последовательном контуре включено последовательно с L и C, а в параллельном — параллельно им. Малые потери (то есть высокая добротность) означают, что в последовательном контуре мало, а в параллельном — велико. В низкочастотном последовательном контуре легко обретает физический смысл — это активное сопротивление провода катушки и проводников цепи.

Практическое применение[править | править код]

Резонансные контуры широко используются как полосовые и режекторные фильтры — в усилителях, радиоприёмниках, а также в различных устройствах автоматики. Например, на самолётах Ил-62М, Ил-76 и Ту-154М установлены блоки регулирования частоты БРЧ-62БМ, в главном элементе которых — блоке измерения частоты БИЧ-1 — имеются два колебательных контура, настроенных на частоты 760 и 840 Гц. На них поступает напряжение с номинальной частотой 800 Гц от подвозбудителя генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной — сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала — то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя[4].

См. также[править | править код]

  • Резонанс токов
  • Резонанс напряжений
  • Электрический импеданс
  • Многополюсник
  • Электромагнитное излучение
  • Потенциальная энергия
  • Кинетическая энергия
  • RC-цепь
  • LR-цепь
  • Гетеродинный индикатор резонанса

Примечания[править | править код]

Литература[править | править код]

  • Попов В. П. Основы теории цепей: Учеб. для вузов / В. П. Попов. — 4-е изд., испр. — М.: Высш. шк., 2003. — 575 с.
  • Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739)
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.:Радио и связь, 1983
  • Фролов А. Д. Радиодетали и узлы. — М.: Высшая школа, 1975. — С. 195-223. — 440 с. — (Учебное пособие для вузов).

Источник