Какая векторная величина обладает свойством сохранения

ГЛАВА III. ЗАКОНЫ СОХРАНЕНИЯ

§ 18. Сохраняющиеся величины

Тела, образующие механическую систему, могут взаимодействовать как между собой, так и с телами, не принадлежащими данной системе. В соответствии с этим силы, действующие на тела системы, можно подразделить на внутренние и внешние. Внутренними мы будем называть силы, с которыми на данное тело воздействуют остальные тела системы, внешними — силы, обусловленные воздействием тел, не принадлежащих системе. В случае, если внешние силы отсутствуют, система называется замкнутой.

Для замкнутых систем существуют такие функции координат и скоростей образующих систему частиц которые сохраняют при движении постоянные значения. Эти функции носят название интегралов движения.

Для системы из N частиц, между которыми нет жестких связей, можно образовать 6N — 1 интегралов движения. Однако интерес представляют только те из них, которые обладают свойством аддитивности. Это свойство заключается в том, что значение интеграла движения для системы, состоящей из частей, взаимодействием которых можно пренебречь, равно сумме значений для каждой из частей в отдельности. Аддитивных интегралов движения имеется три. Один из них называется энергией, второй — импульсом, третий — моментом импульса.

Итак, для замкнутых систем оказываются неизменными (сохраняются) три физические величины: энергия, импульс и момент импульса. В соответствии с этим имеют место три закона сохранения — закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса. Эти законы тесно связаны с основными свойствами пространства и времени.

В основе сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени.

Равнозначность следует понимать в том смысле, что замена момента времени моментом U без изменения значений координат и скоростей частиц не изменяет механические свойства системы. Это означает, что после указанной замены координаты и скорости частиц имеют в любой момент времени такие же значения, какие они имели бы до замены в момент .

В основе сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках. Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое без изменения взаимного расположения и скоростей частиц не изменяет механические свойства системы (предполагается, что на новом месте замкнутость системы не нарушается).

Наконец, в основе сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям. Одинаковость следует понимать в том смысле, что поворот замкнутой системы как целого не отражается на ее механических свойствах.

Законы сохранения представляют собой мощное орудие исследования. Часто бывает, что точное решение уравнений движения оказывается крайне сложным. В этих случаях с помощью законов сохранения можно и без решения уравнений движения получить ряд важных данных о протекании механических явлений. Законы сохранения не зависят от характера действующих сил. Поэтому с их, помощью можно получить ряд важных сведений о поведении механических систем даже в тех случаях, когда силы оказываются неизвестными.

В последующих параграфах мы получим законы сохранения, исходя из уравнений Ньютона. Однако следует иметь в виду, что законы сохранения обладают гораздо большей общностью, чем законы Ньютона. Законы сохранения остаются строго справедливыми даже тогда, когда законы Ньютона (в частности, третий закон) претерпевают нарушения. Подчеркнем, что законы сохранения энергии, импульса и момента импульса являются точными законами, строго выполняющимися также и в релятивистской области.

Источник

И́мпульс (коли́чество движе́ния) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы этого тела на его скорость , направление импульса совпадает с направлением вектора скорости:

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией — однородностью пространства.

История появления термина[править | править код]

Средневековые натурфилософы, в соответствии с учением Аристотеля, полагали, что для поддержания движения непременно требуется некоторая сила, без силы движение прекращается. Часть учёных выдвинула возражение против этого утверждения: почему брошенный камень продолжает двигаться, хотя связь с силой руки утрачена?

Для ответа на подобные вопросы Жан Буридан (XIV век) изменил ранее известное в философии понятие «импетус». По Буридану, летящий камень обладает «импетусом», который сохранялся бы в отсутствие сопротивления воздуха. При этом «импетус» прямо пропорционален скорости. В другом месте он пишет о том, что тела с бо́льшим весом способны вместить больше импетуса.

В первой половине XVII века Рене Декартом было введено понятие «количества движения». Он высказал предположение о том, что сохраняется не только количество движения одного тела, изолированного от внешних воздействий, но и любой системы тел, взаимодействующих лишь друг с другом. Физическое понятие массы в то время ещё не было формализовано — и он определил количество движения как произведение «величины тела на скорость его движения». Под скоростью Декарт подразумевал абсолютную величину (модуль) скорости, не учитывая её направление. Поэтому теория Декарта согласовывалась с опытом лишь в некоторых случаях (например, Валлис, Рен и Гюйгенс в 1668 году использовали её для исследования абсолютно упругого столкновения в системе центра масс).

Читайте также:  Какие свойства воды позволяют ей стать колыбелью жизни

Валлис в 1668 году первым предложил считать количество движения не скалярной, а направленной величиной, учитывая направления с помощью знаков «плюс» и минус»[1]. В 1670 году он окончательно сформулировал закон сохранения количества движения. Экспериментальным доказательством закона послужило то, что новый закон позволял рассчитывать неупругие удары, а также удары в любых системах отсчёта.

Закон сохранения количества движения был теоретически доказан Исааком Ньютоном через третий и второй закон Ньютона. Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».

Определение импульса[править | править код]

Классическая механика[править | править код]

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости:

соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) является килограмм-метр в секунду (кг·м/с).

Если мы имеем дело с телом конечного размера, не состоящим из дискретных материальных точек, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками, и просуммировать по ним, в результате получим:

Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы), сохраняется во времени:

(*)

Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).

Релятивистская механика[править | править код]

В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина

где  — масса -й материальной точки, — её скорость.

Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта.
Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как

На практике часто применяются следующие соотношения между массой, импульсом и энергией частицы:

В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.

Свойства импульса[править | править код]

  • Аддитивность. Это свойство означает, что импульс механической системы, состоящей из материальных точек, равен сумме импульсов всех материальных точек, входящих в систему.[2]
  • Инвариантность по отношению к повороту системы отсчета. [2]
  • Сохранение. Импульс не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[2]. Свойства сохранения кинетической энергии, сохранения импульса и второго закона Ньютона достаточно, чтобы вывести математическую формулу импульса.[3][4]

Обобщённый импульс в теоретической механике[править | править код]

В теоретической механике обобщённым импульсом называется частная производная лагранжиана системы по обобщённой скорости

В случае, если лагранжиан системы не зависит от некоторой обобщённой координаты, то в силу уравнений Лагранжа

Для свободной частицы в релятивистской механике функция Лагранжа имеет вид: , отсюда:

Независимость лагранжиана замкнутой системы от её положения в пространстве следует из свойства однородности пространства: для хорошо изолированной системы её поведение не зависит от того, в какое место пространства мы её поместим. По теореме Нётер из этой однородности следует сохранение некоторой физической величины. Эту величину и называют импульсом (обычным, не обобщённым).

Обобщённый импульс в электромагнитном поле[править | править код]

В электромагнитном поле обобщённый импульс частицы равен:

где  — векторный потенциал электромагнитного поля.

Формальное определение импульса[править | править код]

Импульсом называется сохраняющаяся физическая величина, связанная с однородностью пространства (инвариант относительно трансляций).

Читайте также:  При какой температуре разрушаются свойства меда

Импульс электромагнитного поля[править | править код]

Электромагнитное поле, как и любой другой материальный объект, обладает импульсом, который легко можно найти, проинтегрировав вектор Пойнтинга по объёму:

(в системе СИ).

Существованием импульса у электромагнитного поля объясняется, например, такое явление, как давление электромагнитного излучения.

Импульс в квантовой механике[править | править код]

Формальное определение[править | править код]

В квантовой механике оператором импульса частицы называют оператор — генератор группы трансляций. Это эрмитов оператор, собственные значения которого отождествляются с импульсом системы частиц. В координатном представлении для системы нерелятивистских частиц он имеет вид

где  — оператор набла, соответствующий дифференцированию по координатам -ой частицы. Гамильтониан системы выражается через оператор импульса:

Для замкнутой системы () оператор импульса коммутирует с гамильтонианом и импульс сохраняется.

Определение через волны де Бройля[править | править код]

Формула де Бройля связывает импульс и длину волны де Бройля.

Модуль импульса обратно пропорционален длине волны :

где — постоянная Планка.

Для частиц не очень высокой энергии, движущихся со скоростью (скорости света), модуль импульса равен (где  — масса частицы), и

Следовательно, длина волны де Бройля тем меньше, чем больше модуль импульса.

В векторном виде это записывается как:

где  — волновой вектор.

Импульс в гидродинамике[править | править код]

В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа . А вместо импульса фигурирует вектор плотности импульса, совпадающий по смыслу с вектором плотности потока массы

Поскольку в турбулентном потоке характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[5]. Если, в согласии с методом Рейнольдса, представить , , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то вектор осреднённой плотности импульса приобретёт вид:

где — вектор плотности флуктуационного потока массы (или «плотность турбулентного импульса»[5]).

Импульсное представление в квантовой теории поля[править | править код]

В квантовой теории поля часто употребляется импульсное представление на основе использования преобразования Фурье. Его преимуществами являются: удобство описания физических систем при помощи энергий и импульсов, а не при помощи пространственно-временных координат; более компактная и наглядная структура динамических переменных.[6]

См. также[править | править код]

  • Импульс силы
  • Момент импульса
  • Закон сохранения импульса
  • Электрический импульс

Литература[править | править код]

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.
  • Ландау Л. Д., Лифшиц Е. М. Механика. — Издание 4-е, исправленное. — М.: Наука, 1988. — 215 с. — («Теоретическая физика», том I). — ISBN 5-02-013850-9.
  • Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
  • Сивухин Д. В. Общий курс физики. — Издание 4-е. — М.: Физматлит, 2002. — Т. I. Механика. — 792 с. — ISBN 5-9221-0225-7.
  • Айзерман М. А. Классическая механика. — М.: Наука, 1980. — 368 с.

Примечания[править | править код]

  1. Григорьян А. Т. Механика от античности до наших дней. — М.: Наука, 1974.
  2. 1 2 3 Айзерман, 1980, с. 49.
  3. ↑ Айзерман, 1980, с. 54.
  4. Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325–362, (1956)
  5. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
  6. Боголюбов Н. Н., Ширков Д. В. Квантовые поля. — М., Наука, 1980. — с. 25

Источник

«Что-то я не помню такой темы в физике» — первое, что, наверное, пришло вам в голову. Да, вы правы — тема незаметная, но в некоторых учебниках она присутствует. «А нужна она мне для ЕГЭ?» Нужна. Точно нужна. Очень нужна. Постоянно нужна.

Давайте приступим. Надо запомнить, что в физике (школьной) есть два типа физических величин:

  • скалярная величина;
  • векторная величина.

Скалярная величина — это просто число. Ну, например, масса тела MMM — это скалярная величина. Пусть, например, M=3M = 3M=3 кг. Время ttt — скалярная величина. Например, время может быть такое: t=7t = 7t=7 сек. 

Векторная величина. Что это такое? Давайте вспомним (а для тех, кто не знал — узнаем), что

вектор — это направленный отрезок.

Стрелка — по-простому. У стрелки (вектора) есть длина (длина стрелки) и направление. Вектор — это нечто, что обладает длиной и направлением.

Читайте также:  Какое свойство воды проявляется если воду разлить

Примеры векторных величин: сила F⃗vec {F}F⃗, скорость V⃗vec{V}V⃗.

Длина вектора обозначается специальным символом — символом модуля | | — это две параллельные палочки. Например, ∣F⃗∣|vec{F}|∣F⃗∣ — модуль силы;  ∣V⃗∣|vec{V}|∣V⃗∣ — модуль скорости. Модуль вектора — это уже число. Например, может быть так, что модуль силы ∣F⃗∣=8|vec{F}|=8∣F⃗∣=8 H, модуль скорости ∣V⃗∣=8|vec{V}|=8∣V⃗∣=8 м/с.

Направление вектора изображается на картинке. Куда показывает вектор — туда он и направлен. Например, бывает так, что вектор направлен вверх, вниз и т.д. Вектор может быть направлен вдоль какой-то плоскости. Примеры можете видеть на картинках.

Может возникнуть вопрос: а как отличить векторную величину от скалярной? Или так: как я узнаю, что передо мной вектор, а не скаляр?

Ну, самое простое — это опыт. Решая задачи, читая теоретический материал, вы со временем запомните, какие величины векторные, а какие скалярные. Физических величин не так много, как может показаться.

А способ чуть посложнее — это представить эти величины и решить для себя: могут они иметь направление? Если да — то это вектор, если нет — скаляр.

Например: заряд конденсатора. Если заряд имеет направление, то куда он направлен? Непонятно — поэтому, скорее всего, заряд — это скалярная величина.

Другой пример: длина отрезка. Если эта физическая величина имеет направление, то откуда куда она направлена: от точки 1 до точки 2? Или от точки 2 до точки 1? Трудно выбрать — поэтому, скорее всего, длина отрезка — это скаляр.

Какие из представленных на рисунках величин являются скалярными, а какие — векторными?

а) Длина отрезка

Скаляр

Вектор

б) Скорость автомобиля V⃗vec{V}V⃗

Скаляр

Вектор

в) Сила притяжения луны землей F⃗vec{F}F⃗

Скаляр

Вектор

г) Объем воздушного шара VVV

Скаляр

Вектор

д) Путь SSS из пункта А в пункт B

Скаляр

Вектор

е) Перемещение r⃗vec{r}r⃗ из пунтка А в пункт B

Скаляр

Вектор

«Ну и что?» — спросите вы. «Ну и то», — ответим мы. Все это было введение. Самое интересное (или лучше — самое нужное) — это то, что можно делать со скалярными величинами и с векторами. 

Со скалярными величинами ничего сложного — это же просто числа. Их складывают, вычитают, умножают, делят, возводят в степень, берут корень и т.д. Например, если масса одного бруска m1=2m_1 =2m1​=2 кг, а масса другого бруска m2=3m_2=3m2​=3 кг, то вместе они образуют тело массой m=2+3=5m=2+3=5m=2+3=5 кг.

С векторами можно делать почти все то же самое, но делается это немного странно.

Сложение векторов

1. Сложение векторов будем разбирать на конкретном примере. Пусть на шарик действуют силы F1⃗vec{F_1}F1​⃗​ и F2⃗vec{F_2}F2​⃗​. Оказывается, их можно заменить одной силой, если сложить.

Как складывать? Есть два способа:

а) Метод параллелограмма (прямоугольника);

б) Метод тругольника.

а) Метод параллелограмма (прямоугольника). Если нужно сложить два вектора a⃗vec {a}a⃗ и b⃗vec{b}b⃗, то нужно перенести параллельно вектор a⃗vec{a}a⃗ и отложить от конца вектора b⃗vec{b}b⃗. Аналогично с вектором b⃗vec{b}b⃗: переносим его параллельно и откладываем от конца вектора a⃗vec{a}a⃗. Должен получиться параллелограмм. Или прямоугольник (если повезет). Теперь соединяем начало исходных векторов a⃗vec{a}a⃗ и b⃗vec{b}b⃗ с противоположной вершиной параллелограмма. Получаем вектор c⃗=a⃗+b⃗vec{c}=vec{a}+vec{b}c⃗=a⃗+b⃗.

б) Метод треугольника. Это альтернативный способ. Хотя по сути в нем все тоже самое. Пусть опять же есть два вектора a⃗vec {a}a⃗ и b⃗vec{b}b⃗. Берем любой из них. Например, берем вектор b⃗vec{b}b⃗ и переносим его начало в конец вектора a⃗vec{a}a⃗. Получился почти треугольник. Соединяем начало вектора a⃗vec{a}a⃗ и конец вектора b⃗vec{b}b⃗ — это и есть вектор c⃗vec{c}c⃗.

К телу приложены две силы F1F_1F1​ и F2F_2F2​.

Какой вектор показывает правильное направление суммарной силы (суммы векторов)?

1

2

3

4

Доска двигается со скоростью V1V_1V1​ относительно стола. Шарик катится по доске со скоростью V2V_2V2​ относительно доски.

Какой вектор показывает правильное направление для суммарной скорости шарика относительно стола?

1

2

3

4

Умножение вектора на число

Ну это вообще легко. Если число положительное, то умножение — это просто удлинение вектора. Направление при этом сохраняется. Пример можете видеть на рисунке.

Умножить на (−1)(-1)(−1) — это просто изменить направления вектора на противоположное.

Умножить на другое отрицательное число — это просто изменить направление на противоположное и удлинить вектор в соответствующее число раз.

Дан вектор f⃗vec{f}f⃗​.

Запишите подряд, без пробелов, номера векторов 0,5f⃗0,5vec{f}0,5f⃗​ и −2f⃗-2vec{f}−2f⃗​.

Самое частое, что делают с векторами, — это нахождение их проекций. Об этом читайте в следующей статье — «Проектирование векторов на оси».

Источник