Какая одна кольцевая молекула днк содержится в клетке

Для бактерий и сине-зеленых водорослей, которых принято причислять к классу прокариот (то есть доядерных живых организмов), характерно наличие бактериальной хромосомы. Это условное название, за которым скрывается единственная кольцевая молекула ДНК. Она имеется у всех клеток прокариот, располагается непосредственно в цитоплазме, не имея защитной оболочки.

Особенности доядерных микроорганизмов

Как становится понятным из определения прокариот, основное качество их строения заключается в отсутствии ядра. Кольцевая молекула ДНК отвечает за сохранность и передачу всей информации, которая понадобится новой клетке, созданной в процессе деления. Структура цитоплазмы очень плотная и она неподвижна. В ней нет ряда органоидов, которые выполняют важные функции в клетках эукариот:

  • митохондрий,
  • лизосом,
  • эндоплазматической сети,
  • пластидов,
  • комплекса Гольджи.

В цитоплазме хаотично расположены рибосомы, которые «заняты» на производстве белков. Немаловажной является миссия по производству энергии. Ее синтез происходит в митохондриях, но строение бактерий исключает их наличие. Поэтому функцию данных органоидов взяла на себя именно цитоплазма.

В митохондриях имеется одна особенность, делающая их несколько схожими с бактериями, – в них хранится митохондриальная ДНК. Ее строение напоминает бактериальные хромосомы. ДНК в митохондриях собрана в отдельный кольцевой нуклеоид. Некоторые особо длинные органоиды могут содержать до десяти таких молекул. Когда в подобных митохондриях начинается процесс деления, то от них отделяется участок, содержащий в себе один нуклеоид. И в этом можно также найти сходство с бинарным делением бактерий.

Геном микроорганизмов

Процесс самовоспроизведения, во время которого происходит копирование важных данных из одного источника на другой, называют репликацией. Результатом этого действия (свойственного в том числе и для клеток бактерий) является создание себе подобной структуры. Участниками репликации (репликонами) у прокариотов считаются:

  • кольцевая молекула ДНК,
  • плазмиды.

Нуклеотиды ДНК у клеток бактерий расположены в определенной последовательности. Такое строение позволяет выстроить порядок аминокислот в белке. В каждом гене содержится уникальное число и расстановка нуклеотидов.

Все свойства и особенности прокариот определены их комплексом генов (генотипом). Если вести речь о микроорганизмах, то для них генотип и геном являются практически синонимами.

Фенотип является результатом взаимодействия совокупности генов и условий обитания. Он находится в зависимости от конкретных условий окружающей среды, но контролируется непосредственно генотипом. Это обусловлено тем, что все возможные изменения уже определены набором генов, составляющим участок кольцевой молекулы ДНК.

Генотип может меняться не только в зависимости от влияния окружающей среды. К его модификации могут приводить различные мутации или перестановки генов в строении молекулы ДНК. Исходя из этого, выделяют ненаследственную (средовую) изменчивость и наследственную (модификационную) форму изменений генотипа. Если нуклеотиды в кольцевой молекуле ДНК перестроились или были частично утеряны под воздействием мутации, то такое строение будет необратимым. А когда «виновником» изменений становятся факторы окружающей среды, то с их устранением исчезнут и вновь приобретенные качества.

Бактериальная хромосома

Кольцевая молекула ДНК в клетках различных представителей класса бактерий отличается по размерам. Но имеет схожее строение, как и функции, во всех случаях.

  1. Бактериальная хромосома у прокариотов всегда одна.
  2. Она находится в цитоплазме.
  3. Если в клетках у эукариотов молекула ДНК имеет линейное строение и считается более длинной (в ней имеется до 1010 пар оснований), то у бактерий она замкнута в кольцо. И еще бактериальная хромосома прокариот короче (5106 пар оснований).
  4. В одной кольцевой молекуле ДНК находится информация обо всех нужных функциях для жизнедеятельности бактерий. Эти гены можно поделить на 10 групп (по принципу процессов, которые они контролируют в клетке). Можно отобразить данную классификацию в виде таблицы.
Процессы жизнедеятельности в клетках прокариотЧисло изученных генов, которые находятся в клетке бактерий и отвечают за определенные процессы
Доставка клетке различных соединений и питательных веществ92
Проведение синтеза фосфолипидов, жирных и аминокислот, нуклеотидов, витаминов и других соединений221
Организация работы аппарата по синтезу белков164
Синтез оболочки42
Расщепление сложных органических веществ и другие реакции для выработки энергии138
Катаболизм (переработка, расщепление) макромолекул белков, углеводов и жиров22
Способность направленного движения к полезным веществам и от раздражителя (хемотаксис), подвижность бактерий в целом39
Выработка АТФ (универсальная форма химической энергии, присущая любой живой клетке). Как упоминалось ранее, данный процесс у эукариотов протекает в митохондриях и является для этих органоидов основным родом деятельности15
Репликация нуклеиновых кислот, в том числе и генов49
Иные гены, в том числе и с неизученными функциями110

Вообще, одна хромосома способна нести в себе около 1000 известных генов.

Плазмиды

Еще одним репликоном прокариот являются плазмиды. У бактерий они представляют собой молекулы ДНК, имеющие строение в виде двух цепочек, замкнутых в кольцо. В отличие от бактериальной хромосомы они отвечают за кодирование тех «умений» бактерии, которые помогут ей выжить, если вдруг она окажется в неблагоприятных условиях для существования. Они могут автономно воспроизводить себя, поэтому в цитоплазме может быть несколько копий плазмид.

Трансмиссивные репликоны способны передаваться из одной клетки в другую. Они несут в своей кольцевой молекуле ДНК некоторые признаки, которые причисляют к категории фенотипических изменений:

  • выработка устойчивости к антибиотикам;
  • способность продуцировать колицины (белковые вещества, способные уничтожать микроорганизмы того же рода, что послужили источником их возникновения);
  • переработка сложных органических веществ;
  • синтез антибиотических веществ;
  • способность проникать в организм и вызывать заболевания;
  • возможность преодолевать защитные механизмы, размножаться и распространяться в организме;
  • умение вырабатывать токсины.

Последние три «навыка» называют факторами патогенности, знания о которых содержит в себе кольцевая молекула ДНК плазмид. Именно благодаря этим факторам болезнетворные бактерии становятся опасными для человеческого организма.

Таким образом, кольцевая молекула ДНК, имеющаяся у всех прокариот, одна несет в себе целый комплекс навыков, полезных для их выживания и жизнедеятельности.

Источник

Описание и история

ДНК (Дезоксирибонуклеиновая кислота) полимер, выполняющий функции хранения, передачи и реализации информации жизнедеятельности организмов. Она служит информационным носителем о структуре разнообразных видов РНК и белков.

Ядро клетки прокариотов содержит кольцевую ДНК – замкнутый полимер, не имеющий концевых генов. Для этих молекул (нуклеотиды), характерно прикрепление в клетках к мембране изнутри. В клетках прокариотов и низших эукариотов присутствуют кольцевые плазмиды. Линейную ДНК содержат клетки животных, растений и грибов (эукариот).

Начало бурного развития молекулярной биологии спровоцировало в 1953 г. открытие двухцепочной структуры. Выдающиеся ученые, внесшие решающий вклад в этот прорыв Фрэнсис Крик, Джеймс Уотсон, Морис Уилкинс в 1962 г. удостоились Нобелевской премии.

Носители

Некоторые вирусы содержат геномную ДНК кольцевой формы. У человека кольцевая ДНК находится в митохондриях цитоплазме. Носители кольцевой это клетки доядерных организмов – прокариотов: клеточные органоиды митохондрии и пластиды; простейшие одноклеточные бактерии. Прокариоты представлены множеством видов.

Кольцевая ДНК

Фототрофы представители — хлорофиллы и каротиноиды, используют свет в качестве источника энергии. Серные бактерии, усваивая водород, окисляют сероводород до серы и сульфатов. Цианобактерии расщепляя воду, выделяют молекулярный кислород. Бактерии – хемоавтотрофы для получения энергии используют неорганические вещества. Получают из аммиака нитриты, усваивая углерод. Они способны выполнять окисление двухвалентного железа до трехвалентного. Бактерии – органотрофы, использующие химическую реакцию брожения, как источник жизни. Их еще называют анаэробными.

Также существуют прокариоты, приспособившиеся жить в организме живых существ. Среди них встречаются виды, приносящие пользу своим хозяевам. Например, бактерии помогающие пищеварению и усвоению полезных веществ. Есть виды, не приносящие ни вреда, ни пользы.

Среди прокариотов встречаются виды, паразитирующие на своем носителе вызывающие болезни. Например, дизентерийная палочка, холерный вибрион, дифтерийная палочка, пневмококки, палочка Коха, чумная палочка, спирохеты, бактерия ботулизма. Все эти бактерии вызывают серьезные и опасные заболевания.

Еще один представитель прокариотов цианеи — сине-зелёные водоросли. Они очищают воду, помогают минерализации продуктов гниения.

Репликация

Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации. Репликация кольцевого типа достаточно простой процесс удвоения молекулы. То есть по принципу комплементарности происходит разделение и наращивание по еще одной цепочке. В результате получаем две дочерние ДНК, идентичные копии исходной. Репликация не что иное, как рост многоклеточного организма или размножение одноклеточного. В случае кольцевого строения молекулы процесс удвоения протекает наиболее точно без погрешности за счет отсутствия концевых генов.

Применение и перспективы

Новая эра в медицине это изобретение вакцин. Сейчас на разработку вакцин направлено много научных исследований. Целью подобных изысканий служит предупреждение заболеваемости человека.

Производство ДНК-вакцин происходит с помощью методики рекомбинантной ДНК. Заражающая бактерия ослабляется путем искусственных мутаций генов. Подобный принцип применяют для производства живых рекомбинантных вакцин. Их получают, вводя ген, кодирующий иммуногенный протеин клетки, а затем встраивают внутрь стабильного полимера кольцевой ДНК — плазмиду. Помимо того в плазмиду встраиваются элементы, для эффективной вставки гена в клетку эукариота и синтеза белка. Преобразованную плазмиду помещают в бактериальную среду для размножения. После из бактерий получают плазмидную ДНК, очищая от примесей. Это и есть живая вакцина. Она способствует невосприимчивости к возбудителям болезни. Эти плазмиды, не проникают в человеческие хромосомы.

Способность живых вакцин вырабатывать иммунитет по отношению к болезнетворным возбудителям доказана.

Генная инженерия предоставляет большие возможности преобразования клеток эукариотов и прокариотов для выработки белка. Что позволяет проанализировать строение и функции белков для применения их как лекарство.

Внутрь простейших организмов вводятся гены, продуцирующие важные белки для медицинских целей. Научные лаборатории применяют специализированное оборудование для получения лекарств (антибиотиков, ферментов, гормонов, витаминов, других активных соединений) из специально выведенных микроорганизмов.

Один из примеров кишечная палочка. Ее клетки служат для воспроизводства человеческого гормона инсулина. Выработанный таким образом гормон не имеет примесей, не дает нежелательных эффектов по сравнению с животным инсулином. Кишечная палочка способна продуцированию соматотропина. Раньше его производили из трупного материала, но такой гормон мог включать вирусы. Препарат интерферон противовирусного значения рожден в лаборатории благодаря генной инженерии.

Основа генотарапии — открытие структуры ДНК. Основополагающим является, исправление генетического материала посредством подконтрольного изменения.

Сегодня стадию разработки проходит задача доставки генетически активного материала к проблемным клеткам, содержащим дефектный ген. То есть, главное, организовать эффективный способ доставки и обеспечить длительное функционирование генетического материала. Как один из способов применение чистой ДНК, встраиваемой в плазмиду. Сам вопрос доставки корректирующего материала практически решен. Но такие задачи, как стабильность, регулируемость, безопасность материала проходят стадию доработки.

Генотерапия открывает большие перспективы в лечении наследственных заболеваний, нарушений центральной нервной системы, инфекционных и онкологических заболеваний.

Несмотря на существенное продвижение науки в изучении структуры остается много вопросов. Самый актуальный вопрос это причина наличия кольцевой ДНК у простейших организмов, а линейной — у высших организмов.

Источник

Основной секрет органической жизни кроется в способности к размножению и передаче наследственной информации от предыдущих поколений потомкам через довольно простой механизм самокопирования макромолекулы ДНК каждой живой клетки. Каждой, независимо от того, состоит организм из большого количества клеток или же речь идет о тех ДНК, которые находятся в клетках бактерий, этих одноклеточных простейших организмов, не всегда способных даже в большую колонию собраться.

Хранение клеточного генетического материала

Как у всех представителей органической жизни, наследственная (генетическая) информация бактерий хранится в их ДНК. Что такое генетическая информация? Какая структура хранит наследственную информацию?

  1. Генетическая информация – это определенная последовательность нуклеотидов. Другого секрета в ядре нет. Копируя эту последовательность, клетка синтезирует самые разнообразные белки. Они же решают все остальные вопросы организма, начиная с организационных, заканчивая снабжением клетки строительным материалом.
  2. Макромолекула ДНК – четыре нуклеиновых основания (аденин, гуанин, тимин и цитозин), объединенные в двойную спираль сахаром дезоксирибозой и остатками фосфорной кислоты. Именно нуклеиновые основания кодируют последовательность сборки белков независимо от того, есть оформленное ядро в клетке или нет.

Дезоксирибонуклеиновая кислота бактерий имеет такое же строение, как молекулы – хранители наследственной информации всех остальных живых существ на планете. Так же, как все другие органические клетки, бактерия образует из ДНК хромосомы. Но это не значит, что других отличий нет.

Фундаментальным отличием бактерии является то, что у нее нет клеточного ядра, наследственная информация бактерии не собрана в клеточное ядро, это просто кольцевая молекула, которая прилеплена к одной из стенок цитоплазматической мембраны.

Однако то обстоятельство, что ядра нет, не препятствует активным процессам репликации и трансляции с использованием этого хранителя наследственной информации. Чтобы понять, как происходит передача информации, нужно понимать, что такое хромосомы, гены и клеточное ядро.

  1. Ген – участок макромолекулы, на котором записана последовательность нуклеотидов, позволяющая собирать один определенный вид белка. Другой информации в генах нет.
  2. Хромосома – комбинация цепи ДНК с белками гистонами, которые ее структурируют и придают ей определенную форму перед тем, как клетка начинает делиться. В фазе, когда деление не происходит, в клетке (или в ядре, если речь идет о ядерных эукариотах) как таковых хромосом нет.
  3. Клеточное ядро – это клеточная структура, которая содержит наследственную информацию, структурированную в хромосому, когда клетка готовится к делению. В ней инициируется сам процесс деления. Важно помнить, что у бактерий клеточного ядра нет.

Если в эукариотической клетке при делении используются обособленные, специально формирующиеся для удобства деления структуры, то как же происходит размножение бактерий в условиях неоформленного кажущегося сумбура в отсутствие клеточного ядра?

Дезоксирибонуклеиновая кислота бактериальной клетки

Бактериальная молекула ДНК хоть изображается как кольцевая довольно объемная структура, которая располагается в центре клетки, на самом деле представляет собой довольно компактное образование, локализованное на ограниченных участках цитоплазмы.

Ввиду отсутствия ядерной мембраны, которая бы отгораживала скомпонованную бактериальную макромолекулу от других клеточных структур, генетический аппарат безъядерных организмов нельзя ассоциировать с генетическим аппаратом эукариотов, поэтому генетический аппарат прокариотов назвали нуклеоид.

Характерные черты нуклеоида:

  1. ДНК, в которой содержится нескольких тысяч генов.
  2. Гены расположены линейно и называются хромосомой. Хромосома бактерии – это линейная совокупность ее генов.
  3. Макромолекула также сворачивается белками, похожими на эукариотические гистоны.

Нуклеоид крепится к цитоплазматической мембране в тех точках, где начинается и заканчивается репликация (самокопирование).

Экспериментальным путем установлено, что нуклеоид и хромосома – это не одно и то же. Увеличение количества хромосом (линейных генов) – свидетельство того, что бактерии активно делятся. Один нуклеоид может состоять из одной хромосомы или нескольких ее копий. Так, в период деления азотобактерия реплицируется до 20-25 хромосом (копий нуклеоида).

Процесс копирования

В теоретических конструкциях, разработанных микробиологами в те годы, когда изучать сложные молекулярные процессы экспериментальным путем было очень сложно или практически невозможно, копирование дезоксирибонуклеиновой кислоты может осуществляться тремя способами:

  1. Консервативный, при котором двойная родительская спираль не раскручивается, а двойная дочерняя спираль полностью образовывается из нового материала.
  2. Дисперсивный, при котором родительская макромолекула распадается на фрагменты, а дочерние формируются на нуклеотидных последовательностях этих фрагментов как на матрицах.
  3. Полуконсервативный. Согласно этой модели, двойная спираль раскручивается, и каждая цепь спирали служит матрицей для дочерних ДНК. Формируется так называемый гибрид старой макромолекулы и цепи, созданной из новых компонентов.

Когда в 1957 году был найден способ отслеживания процессов, происходящих в бактериальной ДНК при ее репликации, было установлено, что дезоксирибонуклеиновая кислота реплицируется полуконсервативным путем, то есть через раскручивание и использование раскрученных участков в качестве матриц для синтеза новых макромолекул.

Сам процесс репликации бактериальной ДНК очень схож с репликацией ДНК остальных органических механизмов. Происходит он по следующей схеме:

  1. ДНК-хеликазы раскручивают и разрывают двойную спираль, двигаясь вдоль сахарофосфатного остова дезоксирибонуклеиновой кислоты.
  2. Ферменты полимеразы катализируют реакции присоединения к однонитевым фрагментам дезоксирибонуклеиновой кислоты комплиментарных нуклеиновых оснований.

После репликации происходит удвоение всех основных частей клетки: органелл, цитоплазматической мембраны, клеточной стенки, и бактериальная клетка распадается надвое.

Проблематика

Помимо исключительно научного интереса в изучении ДНК бактерий, механизм репликации и передачи наследственной информации от одной клетки к другой также имеют исключительную практическую важность.

Широко известный факт, что бактерии очень быстро адаптируются при воздействии на них антибиотиков и начинают выработку определенных белков-антител, которые блокируют разрушительное действие антибиотических средств на клетку бактерии. В следующих поколениях бактерий эта устойчивость к конкретной группе антибактериальных препаратов сохраняется.

Более того, благодаря горизонтальному переносу генов (не в процессе деления, а в процессе простого контакта одной бактерии с другой) такая генетическая информация также передается, делая устойчивыми к антибиотикам все большее количество видов бактерий.

Изучением этих свойств бактерий, определением того, как посторонний ген включается в общую структуру дезоксирибонуклеиновой кислоты, и занимается современная микробиология.

Источник