Какая из величин определяет инерционные свойства тел

Какая из величин определяет инерционные свойства тел thumbnail

Анонимный вопрос  ·  7 декабря 2018

3,5 K

Для характеристики инертности тела в поступательном движении введена инерционная масса (скалярная величина).

Для характеристик инертности тела во вращательных движениях введены моменты инерции (скалярные величины):

  • осевой момент инерции,
  • центробежный момент инерции,
  • геометрические моменты инерции,
  • момент инерции относительно плоскости,
  • центральный момент инерции,

а также тензор инерции (тензорная величина).

Для характеристики способности тела участвовать в гравитационном взаимодействии введена гравитационная масса (скалярная величина).

В химии газы, ранее известны как инертные из-за предполагаемого отсутствия участия в каких-либо химических реакциях, были переименованы в благородные газы, так как стало известно, что эти газы реагируют с образованием химических соединений, например, тетрафторида ксенона.

Термин «инертный» также может быть применён в относительном смысле, как «не реакционно-способный».

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Для характеристики инертности тела введена такая величина, как масса, чем она больше, тем выше инертность, то есть больше времени потребуется телу для совершения движения.

Физика, что такое векторная физическая величина?

Инженер, немного пилот. Физик, химик, электронщик-любитель. Независимый звукореж…

Векторная физическая величина — это, по простому, величина, которая имеет направление, то есть, характеризуется кроме величины, ещё и направлением. В отличие от понятия «вектор» в математике, некоторые векторные физические величины характеризуются ещё и точкой приложения (например, сила).

Прочитать ещё 1 ответ

Вес человека 500Н он встал на пружинные весы на лестнице эскалатора, движущейся равномерно вниз со скоростью 0,5 м/с. Какими были показания весов?

физик-теоретик в прошлом, дауншифтер и журналист в настоящем, живу в Германии

Раз человек движется равномерно и прямолинейно, то его система отсчета инерциальна и нет никаких «сил инерции».

Соответственно, его вес (сила давления на весы) так и остался Р=500 Н. Масса М=Р/g, где g=9,8 м/с^2 — ускорение свободного падения. Весы показывают вес не в Ньютонах, а в кгс (килограмм-сила, внесистемная единица), а количественно вес в этих единицах равен массе в килограммах. То есть, весы покажут около 51 кг (на самом деле они покажут вес в 51 кгс).

Ну, или можно сразу пересчитать Ньютоны в кгс, зная, что 1 кгс = 9,8 Н. Тогда Р= (500 Н / 9,8 Н)×1 кгс = 51 кгс и именно это покажут весы. Даже если на них будет написано «кг», а не «кгс». Потому что массу (в килограммах) они на самом деле не измеряют, а измеряют вес (силу давления).

Тело подчиняется воле или физике?

Студентка медицинской академии. Интересна наука, медицина, культура разных…

Мы -это действия законов физики, биохимии, физиологии и прочих разделов медицины, которые описывают строение и функции организма . Все, что мы делаем- подвластно законам физики, все процессы в организме- описывает биохимия и физиология, ну и прочие разделы медицины) Так что, все научно обосновано)

Прочитать ещё 1 ответ

Какое удовольствие является наибольшим?

Трансгуманист, frontend web-разработчик

То, что мы ощущаем как удовольствие является выбросом определенных нейромедиаторов в нейронах головного мозга.
Таким образом наибольшее удовольствие дает прямая стимуляция нейронов химическим (вещества), либо электрическим способом (электрод в нужную область).

Прочитать ещё 1 ответ

Как учёные обнаружили, что скорость света — предел?

Перечитал кучу ерунды от предыдущих авторов. Прежде чем отвечать на такие вопросы, нужно хорошо разобраться в СТО (специальная теория относительности) и, во всяком случае, не путать её с ОТО (общая теория относительности). Оба названия неудачные. Принцип относительности есть не только в СТО, но и в классической механике, созданой Ньютоном, причём, этот принцип был сформулирован Галилеем ещё до Ньютона. СТО фактически является новой механикой, согласующейся с электродинамикой Максвелла. Что касается ОТО, то это теория гравитации, уточняющая ньютоновский же закон всемирного тяготения и согласованная с СТО в том смысле, что при отсутствии гравитационного поля ОТО отличается от СТО только математическим аппаратом, который в ОТО гораздо более сложный.

Обычно СТО основывают на двух постулатах. Первый — это принцип относительности, а второй утверждает существование инвариантной скорости (со времён Эйнштейна эта скорость называется «скорость света») и сформулирован самим Эйнштейном так: свет распространяется в «неподвижной» системе координат с определённой скоростью V, не зависящей от движения источника (сейчас скорость света в вакууме обозначается не «V», а «c»). Под «неподвижной» системой координат Эйнштейн подразумевает то, что позже стало называться инерциальной системой отсчёта (ИСО). Кстати, в классической механике инвариантная скорость тоже есть, но она бесконечная.

Как видим, нет ни одного слова про максимальность скорости света.

Из СТО, однако, вытекают следующие ограничения:

1) если частица в какой-то момент движется со скоростью, меньшей скорости света, то она всегда в прошлом, пока существовала, двигалась со скоростью, меньшей скорости света, и всегда в будущем, пока будет существовать, будет двигаться со скоростью, меньшей скорости света;

2) если частица в какой-то момент движется со скоростью света, то она всегда в прошлом, пока существовала, двигалась со скоростью света, и всегда в будущем, пока будет существовать, будет двигаться со скоростью света;

3) если частица в какой-то момент движется со скоростью, большей скорости света, то она всегда в прошлом, пока существовала, двигалась со скоростью, большей скорости света, и всегда в будущем, пока будет существовать, будет двигаться со скоростью, большей скорости света.

Читайте также:  При какой температуре мед не теряет своих свойств

Таким образом, мы не можем ничего разогнать до сверхсветовой скорости, но, в принципе, сверхсветовая частица может родиться при столкновении обычных частиц.

Гипотетические частицы, движущиеся быстрее света, были названы тахионами. Их тщательно исследовали как в рамках СТО, так и в рамках квантовой теории. Насколько мне известно, существование тахионов противоречит квантовой теории, но здесь я не специалист. СТО самой по себе существование тахионов не проиворечит. Однако принцип причинности, понимаемый как невозможность послать самому себе сигнал в прошлое, запрещает существование тахионов: в СТО, располагая источником тахионов, можно отправить сигнал самому себе в прошлое, хотя посылка такого сигнала в прошлое на сколько-нибудь значительное время требует использования ретранслятора тахионного сигнала, движущегося от Земли с околосветовой скоростью далеко в космосе (скорее всего, можно было бы придумать конструкцию, обходящую это препятствие).

Тахионы также искали в специальных экспериментах, но обнаружить их не удалось. Так что отсутствие частиц и тел, движущихся со сверхсветовой скоростью, на настоящее время можно считать экспериментальным фактом. Со словом «доказано» нужно быть осторожным: остутсвие тахионов не доказано и никогда не будет доказано. Точно так же ни одна физическая теория не доказана и никогда не будет доказана. Что касается СТО и ОТО, то они, конечно, не доказаны, но подтверждаются (проверены) очень большим количеством экспериментов. Ссылки: СТО и ОТО.

То, что обычно пишут про то, как выглядит окружающий мир при движении с околосветовой скоростью, — полная ерунда. Никакие «шарики» не сплющиваются. Тела сокращались бы, если бы мы могли их видеть с помощью сигналов, распространяющихся с бесконечной скоростью. А так как мы их видим с помощью того же света, распространяющегося с конечной скоростью, мы видим их с запаздыванием, в других цветах (эффект Доплера) и не сократившимися, а повёрнутыми. Существует забавная игра, показывающая, как это выглядит. В игре происходит уменьшение скорости света по мере накопления призов. После скачивания нужно просто распаковать архив, и сразу можно играть. Обзор игры. Правда, автор видеоролика плохо переводит с английского.

Прочитать ещё 12 ответов

Источник

Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.

Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.

Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела.

Масса тела (m) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m= F/a,

где: m – масса; F– сила; a – ускорение.

Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.

В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.

Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.

Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.

Силовые характеристики.

Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам при поступательном движении относятся:


· сила;

· импульс силы;


· импульс тела (количество движения).

Сила (F) – мера механического действия одного тела на другое. Сила определяется формулой: F=ma, где m – масса тела; aускорение.

Импульс силы (S) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).

Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии. При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.

Читайте также:  Какие свойства есть у помидора

Импульс тела (количество движения, Q) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q = mV.

Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.

К силовым характеристикам при вращательном движении относятся:


· момент силы;

· импульс момента силы;

· кинетический момент.

Момент силы (М) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M= Fh, где h – плечо силы.

Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.

Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.

Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.

Импульс момента силы () – мера воздействия момента силы относительно данной оси за промежуток времени.

Кинетический момент (К) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K=Jω.

Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.

Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К) остается неизменным. Поэтому если уменьшить момент инерции (J), то есть произвести группировку, увеличивается угловая скорость ω. Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения.

Дата добавления: 2016-10-23; просмотров: 2251 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Классификация динамических характеристик движений человека

Вращательное движение тела

Мерой изменения положения тела при вращательном движении является угол поворота фи. Чтобы знать положение тела во вращательном движении в любой момент времени, надо знать зависимость угла поворота фи от времени: фи = фи(t).

Данное уравнение выражает закон вращательного движения тела. Основными кинематическими характеристиками вращательного движения тела являются его угловая скорость (ω) и угловое ускорение (e).

При вращательном движении тела разные его точки имеют различные линейные скорости и ускорения. Линейная скорость точки вращающегося тела численно равна произведению угловой скорости на радиус вращения и направлена по касательной к окружности вращения (перпендикулярно радиусу вращения R): V= ωR.

Таким образом, линейные скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения (чем дальше удалена точка от оси вращения, тем большую линейную скорость она имеет).

Пример.При выполнении гимнастом большого оборота на перекладине линейная скорость точки, расположенной в области тазобедренного сустава составляет 10,8 м/с, а точки, расположенной в области голеностопного сустава – 18,0 м/с.

В таблице 3.2. представлена взаимосвязь кинематических характеристик при поступательном и вращательном движениях тела.

Таблица 3.2.

Взаимосвязь показателей при поступательном и вращательном движении тела (Н.Б. Кичайкина, 2000)

Поступательное движение Вращательное движение Взаимосвязь
показателей
Линейная скорость (м/c), V Угловая скорость (рад/c), ω V=ω R
Линейное ускорение (м/c2), a Угловое ускорение (рад/c2), e а=e R

Скорость движений человека и движимых им тел изменяются под действием сил. Чтобы раскрыть механизм движений (причины их возникновения и направленность их изменений) исследуют динамические характеристики. К ним относятся:

· инерционные характеристики (особенности тела человека и движимых им тел);

· силовые(особенности взаимодействия звеньев тела и других тел);

· энергетические(характеристики состояния систем).

Разные тела изменяют скорость под действием сил по-разному. Это свойство тел называется инертностью.

Инертность – свойство физических тел, от которого зависит величина получаемых ускорений при их взаимодействии.

Инерционные характеристики – это характеристики тела или системы тел. Среди инерционных характеристик различают: массу тела и момент инерции тела.

Масса тела (m) – мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению: m=F/a,

где: m – масса; F– сила; a – ускорение.

Масса тела зависит от количества вещества, которым обладает тело и характеризует его свойство – как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

Читайте также:  Какая структура определяет химический состав белка и его свойства

В атлетизме при тренировке спортсмены используют штангу различной массы. Из личного опыта им известно, что придать штанге, имеющей большую массу ускорение значительно сложнее, чем штанге маленькой массы.

В случае вращательного движения мало знать массу тела, важно еще знать распределение масс относительно оси вращения. Например, фигурист при вращении прижимает руки к туловищу, а затем разводит их в стороны. Общая масса системы при этом не изменяется, а распределение масс становится другим, и это сказывается на движении, оно замедляется (Н.Б. Кичайкина, 2000). В механике существует характеристика, определяющая меру инертности тела во вращательном движении – момент инерции тела.

Момент инерции тела (J ) – мера инертности твердого тела при вращательном движении.

Момент инерции зависит от распределения массы относительно оси вращения. Его достаточно легко найти для простых геометрических фигур (шар, цилиндр и др.), но определить его в многозвенной системе тела человека при различных позах непросто.

Источник

Какая из величин определяет инерционные свойства тел

Взаимодействие тел, инертность, масса

Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.

Установились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.

Инертность – это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.

Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)

Мерой инертности является инертная масса.

Масса (инертная) – мера инертности тела.

Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение: a∼1mboxed{asimfrac 1m}.

Данная зависимость записана единственно правильным способом, т. к. форма m∼1am sim frac 1a не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела.

Данная зависимость подтверждается многочисленными опытными результатами.

Какая из величин определяет инерционные свойства тел

Рис. 2 Измерение массы методом взаимодействия тел.

Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться не которое время с ускорением (рис. 1) . Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс:

[frac{a_1}{a_2} = frac{m_2}{m_1};]

если взять первую массу за эталонную (m1=mэтm_1 = m_mathrm{эт}), то m2=mэтaэтa2m_2 = m_mathrm{эт}frac{a_mathrm{эт}}{a_2}.

Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.

Измерение массы методом взвешивания тел.

Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).

Какая из величин определяет инерционные свойства тел

Рис. 2

Какая из величин определяет инерционные свойства тел
Рис. 3

Масса, измеренная путём взвешивания, называется гравитационной.

В качестве эталона и той и другой массы принята масса тела, выполненного в форме цилиндра высотой 39 мм39 mathrm{мм} и диаметром 39 мм39 mathrm{мм}, изготовленного из сплава 10 % иридия и 90 % платины (рис. 3).

В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до 10-1210^{-12} % эти массы равны.

Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.

Принцип эквивалентности утверждает, что

1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.

2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.

Пример 1. 

Два тела массами 400 г400 mathrm{г} и 600 г600 mathrm{г} двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с3 mathrm{м}/mathrm{с}?

Решение. 

Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторы е средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: a1a2=m2m1frac{a_1}{a_2} = frac{m_2}{m_1}. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:

[frac{m_2}{m_1} = frac{a_1}{a_2} = frac{frac{Delta v_1}{Delta t}}{frac{Delta v_2}{Delta t}} = frac{v_mathrm{к1}-v_{01}}{v_mathrm{к2}-v_{02}} = frac{v_{01}}{v_{02}},]

откуда получим искомую скорость: v02=m1m2·v01.v_{02} = frac{m_1}{m_2}cdot v_{01}.

Количественно ответ будет таким: v02=0,4 кг0,6 кг·3 мс=2 мсv_{02} = frac{0,4 mathrm{кг}}{0,6 mathrm{кг}}cdot 3 frac{mathrm{м}}{mathrm{с}} = 2 frac{mathrm{м}}{mathrm{с}}.

Источник