Из каких свойств пространства и времени следуют законы сохранения

Из каких свойств пространства и времени следуют законы сохранения thumbnail
      
В предыдущих разделах рассмотрены три фундаментальных закона природы: закон сохранения импульса, момента импульса и энергии. Следует
понимать, что эти законы выполняются только в инерциальных системах отсчета.

      
В самом деле, при выводе этих законов мы пользовались вторым и третьим законами Ньютона, а они применимы только в инерциальных
системах. Напомним также, что импульс и момент импульса сохраняются в том случае, если система замкнутая (сумма всех внешних сил и
всех моментов сил равна нулю). Для сохранения же энергии тела условия замкнутости недостаточно – тело должно быть еще и адиабатически
изолированным (т.е. не участвовать в теплообмене).

      
Во всей истории развития физики законы сохранения оказались чуть ли не единственными законами, сохранившими свое значение при
замене одних теорий другими. Эти законы тесно связаны с основными свойствами пространства и времени.

  • В основе закона сохранения энергии лежит однородность времени, т. е.
    равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в
    том смысле, что замена момента времени t1 на момент времени t2, без изменения значений
    координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты
    и скорости частиц имеют в любой момент времени t2 + t  такие же значения, какие имели
    до замены, в момент времени t1 + t.
  • В основе закона сохранения импульса лежит однородность пространства, т. е.
    одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать
    в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения
    и скоростей частиц, не изменяет механические свойства системы.
  • В основе закона сохранения момента импульса лежит изотропия пространства, т. е.
    одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует
    понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.
  •       
    Между законами типа основного уравнения динамики и законами сохранения имеется принципиальная разница. Законы динамики дают нам
    представление о детальном ходе процесса. Так, если задана сила, действующая на материальную точку и начальные условия, то можно
    найти закон движения, траекторию, величину и направление скорости в любой момент времени и т. п. Законы же сохранения не дают
    нам прямых указаний на то, как должен идти тот или иной процесс. Они говорят лишь о том, какие процессы запрещены и потому в
    природе не происходят.

          
    Таким образом, законы сохранения проявляются как принципы запрета: любое явление, при котором не выполняется хотя бы один из
    законов сохранения, запрещено, и в природе такие явления никогда не наблюдаются. Всякое явление, при котором не нарушается ни
    один из законов сохранения, в принципе может происходить.

          
    Рассмотрим следующий пример. Может ли покоящееся тело за счет внутренней энергии начать двигаться? Этот процесс не противоречит
    закону сохранения энергии. Нужно лишь, чтобы возникающая кинетическая энергия точно равнялась убыли внутренней энергии.

          
    На самом деле такой процесс никогда не происходит, ибо он противоречит закону сохранения импульса. Раз тело покоилось, то его
    импульс был равен нулю. А если оно станет двигаться, то его импульс сам собой увеличится, что невозможно. Поэтому внутренняя
    энергия тела не может превратиться в кинетическую, если тело не распадётся на части.

          
    Если же допустить возможность распада этого тела на части, то запрет, налагаемый законом сохранения импульса, снимается. При этом
    возникшие осколки могут двигаться так, чтобы их центр масс оставался в покое, – а только этого и требует закон сохранения импульса.

          
    Итак, для того чтобы внутренняя энергия покоящегося тела могла превратиться в кинетическую, это тело должно распасться на части.
    Если же есть еще один какой-либо закон, запрещающий распад этого тела на части, то его внутренняя энергия и масса покоя будут
    постоянными величинами.

          
    Фундаментальность законов сохранения заключается в их универсальности. Они справедливы при изучении любых физических
    процессов (механических, тепловых, электромагнитных и др.). Они одинаково применимы в релятивистском и нерелятивистском движении,
    в микромире, где справедливы квантовые представления, и в макромире, с его классическими представлениями.

    Источник

    В основе закона сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени) . Равнозначность следует понимать в том смысле, что замена момента времени t1 на момент времени t2, без изменения значений координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели до замены, в момент времени t1 + t.
    В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат) . Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы.
    В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат) . Одинаковость следует понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.

    Между законами типа основного уравнения динамики и законами сохранения имеется принципиальная разница. Законы динамики дают нам представление о детальном ходе процесса. Так, если задана сила, действующая на материальную точку и начальные условия, то можно найти закон движения, траекторию, величину и направление скорости в любой момент времени и т. п. Законы же сохранения не дают нам прямых указаний на то, как должен идти тот или иной процесс. Они говорят лишь о том, какие процессы запрещены и потому в природе не происходят.
    Таким образом, законы сохранения проявляются как принципы запрета: любое явление, при котором не выполняется хотя бы один из законов сохранения, запрещено, и в природе такие явления никогда не наблюдаются. Всякое явление, при котором не нарушается ни один из законов сохранения, в принципе может происходить.

    Рассмотрим пример. Может ли покоящееся тело за счет внутренней энергии начать двигаться? Этот процесс не противоречит закону сохранения энергии. Нужно лишь, чтобы возникающая кинетическая энергия точно равнялась убыли внутренней энергии.
    На самом деле такой процесс никогда не происходит, ибо он противоречит закону сохранения импульса. Раз тело покоилось, то его импульс был равен нулю. А если оно станет двигаться, то его импульс сам собой увеличится, что невозможно. Поэтому внутренняя энергия тела не может превратиться в кинетическую, если тело не распадётся на части.
    Если же допустить возможность распада этого тела на части, то запрет, налагаемый законом сохранения импульса, снимается. При этом возникшие осколки могут двигаться так, чтобы их центр масс оставался в покое, – а только этого и требует закон сохранения импульса.
    Итак, для того чтобы внутренняя энергия покоящегося тела могла превратиться в кинетическую, это тело должно распасться на части. Если же есть еще один какой-либо закон, запрещающий распад этого тела на части, то его внутренняя энергия и масса покоя будут постоянными величинами.
    Фундаментальность законов сохранения заключается в их универсальности. Они справедливы при изучении любых физических процессов (механических, тепловых, электромагнитных и др.) . Они одинаково применимы в релятивистском и нерелятивистском движении, в микромире, где справедливы квантовые представления, и в макромире, с его классическими представлениями.
    ———————————————————————————

    Источник

    Пространство обладает свойством однородности и изотропности, а время — однородности. Однородность пространства заключается в равноправии всех его точек, а изотропность — в равноправии всех направлений. Во времени все точки равноправны, не существует преимущественной точки отсчета, любую можно принимать за начальную. Указанные свойства пространства и времени связаны с главными законами физики — законами сохранения. Если свойства системы не меняются от преобразования переменных, то ей соответствует определенный закон сохранения. Это — одно из существенных выражений симметрии в мире. Симметрии относительно сдвига времени (однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (однородности пространства) — закон сохранения импульса; симметрии по отношению поворота координатных осей (изотропности пространства) — закон сохранения момента импульса, или углового момента. Из этих свойств вытекает и независимость пространственно-временного интервала, его инвариантность и абсолютность по отношению ко всем системам отсчета.

    Однако появившаяся в начале XX в. теория относительности А. Эйнштейна подвергла радикальному пересмотру традиционные представления о пространстве и времени. Специальная теория относительности (СТО, 1905 г.) объединила их в единое четырехмерное пространственно-временное многообразие (пространство-время). Введя запрет на превышение скорости света, СТО привела к парадоксальным выводам: ввиду принципиального ограничения скорости взаимодействия тел не может существовать единого потока времени для всей Вселенной, так как события, одновременные в одной системе отсчета, будут разновременными в другой. Иначе говоря, не существует самостоятельных, отделенных друг от друга пространства и времени, поскольку каждой системе отсчета (а все они равноправны, выделенных нет) присуще свое разделение событий на прошлые, настоящие и будущие. (Правда, заметить это можно только в

    очень больших масштабах).

    Общая теория относительности (ОТО, 1916 г.) привела к не менее фундаментальному выводу относительно пространства-времени. Его общий смысл таков: пространство и время существуют не «сами по себе», а в тесной зависимости от свойств материи. Высокая плотность вещества искривляет пространство (т.е. заставляет световой луч двигаться не по прямой, а по искривленной траектории, которая тем не менее будет кратчайшей) и замедляет течение времени.

    Итак, подведу небольшой итог:

    · В основе закона сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в том смысле, что замена момента времени t1 на момент времени t2, без изменения значений координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели до замены, в момент времени t1 + t.

    · В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы.

    · В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.

    Глава III. Связь законов сохранения с пространством и временем.

    §1. Теорема Э. Нётер.

    Теорема Эмми Нётер[1] утверждает, что каждой симметрии физической системы соответствует некоторый закон сохранения. Так, закон сохранения энергии соответствует однородности времени, закон сохранения импульса — однородности пространства, закон сохранения момента импульса — изотропии пространства, закон сохранения электрического заряда — калибровочной симметрии и т. д.

    Теорема обычно формулируется для систем, обладающих функционалом[2] действия, и выражает собой инвариантность лагранжиана[3] по отношению к некоторой непрерывной группе преобразований.

    Теорема установлена в работах учёных гёттингенской школы Д. Гильберта, Ф. Клейна и Э. Нётер. В наиболее распространенной формулировке была доказана Эмми Нётер в 1918 году.

    Формулировка теоремы в классической механике звучит следующим образом:

    Каждой однопараметрической группе диффеоморфизмов[4] gs(qi), сохраняющих функцию Лагранжа, соответствует первый интеграл системы, равный:

    В терминах инфинитезимальных преобразований, пусть инфинитезимальное преобразование координат имеет вид:

    и функция Лагранжа

    инвариантна относительно этих преобразований, то есть

    Тогда у системы существует первый интеграл, равный:

    Теорему можно обобщить на случай преобразований, затрагивающих также и время, если представить её движение как зависящее от некоторого параметра τ, причем в процессе движения t = τ. Тогда из преобразований:

    следует первый интеграл:

    В классической механике законы сохранения энергии, импульса и момента импульса выводятся из однородности/изотропности лагранжиана системы — лагранжиан (функция Лагранжа) не меняется со временем сам по себе и не изменяется переносом или поворотом системы в пространстве. По сути это означает то, что при рассмотрении некой замкнутой в лаборатории системы будут получены одни и те же результаты — вне зависимости от расположения лаборатории и времени проведения эксперимента. Другие симметрии лагранжиана системы, если они есть, соответствуют другим сохраняющимся в данной системе величинам (интегралам движения[5]); например, симметрия лагранжиана гравитационной и кулоновской задачи двух тел приводит к сохранению не только энергии, импульса и момента импульса, но и вектора Лапласа — Рунге — Ленца[6].

    §2. Применение теоремы Нетер.

    Для примера я покажу применение теоремы Нетер к универсальным преобразованиям симметрии с рассмотрения сдвига во времени.

    Чтобы получить это преобразование надо, очевидно, считать

    за независимый и постоянный параметр преобразования,

    . В силу этого полная производная функции Лагранжа по времени может быть записана следующим образом:

    (если бы L зависела явно от времени, к правой стороне равенства добавился бы член ).

    Заменяя производные согласно уравнениям Лагранжа на , получим:

    или

    Отсюда видно, что величина

    (1)

    остается неизменной при движении замкнутой системы, то есть является одним из ее интегралов движения. Эта величина называется энергией системы. Аддитивность энергии непосредственно следует из аддитивности функции Лагранжа, через которую она выражается согласно (1) линейным образом.

    Закон сохранения энергии справедлив не только для замкнутых систем, но и для систем, находящихся в постоянном (то есть не зависящем от времени) внешнем поле; единственное использованное в приведенном выводе свойство функции Лагранжа – отсутствие явной зависимости от времени – имеется и в ином случае. Механические системы, энергия которых сохраняется иногда называют консервативными.

    Лагранжева функция замкнутой системы имеет вид:

    где Т – квадратичная функция скоростей. Применяя к ней известную функцию Эйлера об однородных функциях, получим:

    Подставляя это значение в (1), найдем:

    в декартовых координатах:

    Таким образом, энергия системы может быть представлена в виде суммы двух существенно различных членов: кинетической энергии, зависящей от скоростей, и потенциальной энергии, зависящей только от координат частиц.

    Источник

    Весьма важным для понимания законов природы является принцип инвариантности относительно сдвигов в пространстве и во времени, т.е. параллельных переносов начала координат и начала отсчета времени. Он формулируется так: смещение во времени и в пространстве не влияет на протекание физических процессов.

    Инвариантность непосредственно связана с симметрией, представляющей собой неизменность структуры материального объекта относительно его преобразований, т.е. изменения ряда физических условий.

    В широком смысле симметрия означает инвариантность как неизменность свойств системы при некотором изменении (преобразовании) ее параметров. Наглядным примером пространственной симметрии физических систем является кристаллическая структура твердых тел. Симметрия кристаллов – закономерность атомного строения, внешней формы и физических свойств кристаллов. Она заключается в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов и других преобразований симметрии. Симметрия свойств кристалла обусловлена симметрией его строения.

    Орнамент, наверное, самое древнее отображение идеи симметрии, лежащей в основе многих фундаментальных законов. Многие процессы в природе имеют симметричный характер.

    Из сформулированного принципа инвариантности относительно сдвигов в пространстве и во времени следует симметрия пространства и времени, называемая однородностью пространства и времени.

    Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

    Из свойства симметрии пространства – его однородности следует закон сохранения импульса: импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

    Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от момента начала падения тела.

    Из однородности времени следует закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела, из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если работа, совершаемая силой, зависит, траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной (например, сила трения).

    Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется.

    В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии. Строго говоря, все реальные системы в природе диссипативные.

    В консервативных системах полная механическая энергия остается постоянной, могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.

    Закон сохранения и превращения энергии фундаментальный закон природы. Он справедлив как для систем макроскопических тел, так и для микросистем.

    В системе, в которой действуют консервативные и диссипативные силы, например, силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии – сущность неуничтожения материи и ее движения, поскольку энергия, по определению, – универсальная мера различных форм движения и взаимодействия.

    Закон сохранения энергии – результат обобщения многих экспериментальных данных. Идея закона принадлежит М.В. Ломоносову (1711–1765), изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными – врачом Ю. Майером (1814–1878) и естествоиспытателем Г. Гельмгольцем (1821–1894).

    Обратимся еще к одному свойству симметрии пространства – его изотропности. Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

    Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

    Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нётер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства закон сохранения момента импульса.

    Выявление различных симметрий в природе, а иногда и постулирование стало одним из методов теоретического исследования свойств микро-, и мегамира.

    Источник