Физические свойства какой воды отличаются от обычной
Все слышали о воде или H2O, но гораздо меньше людей знают о «тяжелой воде». Чем она отличается от обычной и что будет, если ее выпить? Об этом в нашей статье.
Коллаж картины Алексея Венецианова «Встреча у колодца».
Что такое тяжелая вода?
Чтобы разгадать тайну тяжелой воды, нужно сначала понять, что такое изотопы.
Изотопы (от др.-греч. — «равный», «одинаковый», и — «место») — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа
Энциклопедия «Британника»
Водород имеет следующие изотопы.
Изотопы водорода: протий, дейтерий и тритий.
Дейтерий — это изотоп водорода, который содержит на один нейтрон больше, чем обычный атом этого элемента. Из-за этого дополнительного нейтрона в каждом атоме дейтерия, его масса практически вдвое больше массы атома обычного водорода.
Также как и молекула воды (H2O), молекула тяжелой воды или оксид дейтерия (D2O) имеет два атома, связанных с одним атомом кислорода. Вместо обычных атомов водорода тяжелая вода содержит атомы дейтерия.
Тяжелая вода
Как и обычная вода, тяжелая вода — это жидкость без цвета и запаха. Более того, дейтерий является стабильным изотопом. Это означает, что тяжелая вода не радиоактивна. Молярная масса тяжелой воды 20 г/моль, а вода имеет молярную массу 18 г/моль, из-за этого тяжелая вода более плотная. В твердом состоянии кубик льда оксида дейтерия D2O будет тонуть в воде, а не плавать.
Кубики льда тяжелой воды будут тонуть. Источник изображения: depositphotos.com
В природе тяжелая вода встречается редко. Соотношение тяжелой и обычной воды составляет где-то 1: 20 000 000 молекул.
Какая польза от тяжелой воды?
Тяжелая вода используется в ядерных реакторах. В этих реакторах нейтроны движутся с невероятной скоростью и должны быть замедлены. Замедленное движение нейтронов в реакторе обеспечивает эффективное протекание реакции. Тяжелая вода выступает в качестве замедлителя нейтронов в этой реакции.
Тяжелая вода также может быть использована в качестве индикатора. Изотопный индикатор — это любой атом, который может быть идентифицирован при добавлении в другую смесь. Такой атом позволяет ученым «отслеживать» изменения в смеси.
Что будет если выпить тяжелую воду?
Если вы выпьете небольшое количество тяжелой воды, то это никак не повлияет на вас. Тяжелая вода имеет сладковатый привкус.
Даже выпив несколько стаканов D2O вы не отравитесь, потому что дейтерий не радиоактивен, зато вы можете почувствовать дискомфорт из-за изменения плотности жидкости.
Стакан тяжелой воды? :). Источник изображения: fotosearch.ae
Также вы, вероятно, ощутите небольшое изменение давления жидкости в ваших ушах. Тем не менее, это количество не должно причинить серьезного вреда вашему организму, Через несколько дней весь дейтерий будет выведен из вашего тела.
Однако, если вы будете постоянно пить тяжелую воду (что маловероятно, поскольку, вы вряд ли сможете раздобыть тяжелую воду в таких объемах), то это будет очень вредно для вашего здоровья.
Потребление избыточного количества D2O может привести к летальному исходу. Источник изображения: e-wiki.org
Большая масса атомов дейтерия по сравнению с атомами водорода повлияет на химические реакции, которые происходят в организме. Более тяжелые молекулы D2O будут замедлять естественные химические реакции, которые регулярно происходят в теле человека. Если количество тяжелой воды достигнет 20% от общего количества воды в вашем организме, то это может привести к летальному исходу. Некоторые виды тяжелой воды, например, с атомами трития вместо дейтерия более опасны -тритий тяжелее и, что более важно, радиоактивен. Любое употребление таких жидкостей приведет к телесным повреждениям и может повлиять на целостность ДНК человека.
К счастью, мы крайне редко слышим о передозировке людей тяжелой водой, главным образом, потому что получение D2O весьма дорого и трудоемко. Используя электролиз, можно получить чистую тяжелую воду, но большинство людей не имеют доступа к такому оборудованию. Покупка D2O также обходится очень недешево, стоимость оксида дейтерия более 100 долларов за 100 гр.
Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!
Благодаря своим уникальным физическим и химическим
свойствам, часто аномальным, вода сделала возможной жизнь на Земле. Так в чем
состоят эти уникальные характеристики?
Физические свойства воды
Вода имеет высокую удельную теплоемкость, т.е. ей нужно
много тепла, чтобы нагреться, и потребуется много времени, чтобы потерять
накопленное тепло и остыть. Вот почему она используется в системах охлаждения
(например, в автомобильных радиаторах или для охлаждения промышленного
оборудования). Эта характеристика объясняет также то, почему в прибрежных (или
озерных) регионах температура воздуха мягче: в этих местах, когда времена года
меняются, температура воды «смягчает» температуру воздуха, так как она уменьшается
или увеличивается медленнее.
При ответе на вопрос: какие физические свойства воды
определяют ее особое биологическое значение, первым делом нужно вспомнить, что
она имеет высокое поверхностное натяжение. Это означает, что после наливания на
гладкую поверхность она имеет тенденцию образовывать сферические капли, а не
растекаться в тонкую пленку. И это свойство во многом объясняет высокую
биологическую активность воды. Без гравитации капля ее была бы совершенно
сферической. Поверхностное натяжение позволяет растениям поглощать воду,
содержащуюся в почве, через корни. И поверхностное натяжение делает кровь такой
«проникающей» через ткани нашего организма.
Вода обычно находится в жидком состоянии, но может легко
стать твердой или газообразной. Чистая вода переходит из жидкой в твердую, то
есть замерзает при 0° С, а на уровне моря она кипит при 100 ° С (чем выше
уровень, тем ниже температура, при которой вода начинает кипеть). Значения
кипения и замерзания воды берут в качестве контрольной точки для калибровки
термометров: в градусах Цельсия 0 ° по шкале Цельсия — это точка замерзания, а
100 ° — это точка кипения.
При замерзании вода расширяется, то есть ее плотность
уменьшается, а объем остается неизменным: поэтому лед плывет по поверхности или
лопается бутылка, наполненная водой и помещенная в морозильник.
Вода является особым природным ресурсом, поскольку она
является единственным на Земле веществом, которое можно найти во всех трех
физических состояниях в зависимости от температуры окружающей среды: жидкой,
твердой (лед) и газообразной (пар).
Химические свойства воды
Химическая формула молекулы воды — H2O: два атома водорода
(H2) связаны с одним атомом кислорода (O). Электроны атома (частицы с
отрицательным зарядом) устанавливают связи между собой. Кислород способен
держать их ближе к нему, чем водород. Молекула эта оказывается заряженной
отрицательно вблизи атома кислорода и положительно вблизи атомов водорода.
Поскольку противоположности притягиваются, молекулы воды имеют тенденцию
соединяться вместе, как магниты.
Вода может растворять многие вещества
Воду называют универсальным растворителем, поскольку она
может растворять больше веществ, чем любая другая жидкость. И нам очень с этим
повезло: если бы не это химическое свойство, мы не могли бы выпить чашку
горячего подслащенного чая, потому что сахар остался бы на дне чашки. Вот
почему воды рек, ручьев, озер, морей и океанов, которые выглядят чистыми на
первый взгляд, на самом деле содержат огромное количество растворенных
элементов и минералов, выделяемых камнями или атмосферой.
Везде, где течет вода, над землей, под землей или внутри
нашего тела, вода растворяет в себе и несет чрезвычайно большое количество
различных веществ. Таким образом, она выполняет драгоценную задачу: переносить
иногда на большие расстояния вещества, с которыми она сталкивается на своем
пути. Причем, с водой при обычных климатических условиях не реагирует
большинство этих веществ.
Чистая вода, как и дистиллированная вода, имеет рН 7
(средний). Морская вода в основном щелочная, имеет рН около 8. Чистая вода
реагирует с немногими веществами, например, серой, некоторыми солями и
металлами. Также возможен гидролиз (распад) воды при реакции с какими-то
химическими веществами.
Вода может содержать огромное количество взвешенных частиц
разных веществ, в т.ч. и радиоактивных. Именно этим и объясняется превращение
чистой воды в радиоактивную. И в наш век вездесущей атомной энергетики глубокая
и своевременная дезактивация воды – уже глобальная проблема.
Физико-химические свойства воды
То, какими свойствами обладает чистая вода, во многих
случаях зависит от водородных связей внутри ее молекул. При сравнении этих
свойств со свойствами атомов или не связанных с водородом молекулярных
жидкостей с аналогичными размерами молекул некоторые особенности воды
заслуживают внимания:
- Точка плавления льда исключительно высока среди гидридов шестой основной группы.
- Во время таяния льда при атмосферном давлении объем вещества уменьшается на 8,2%. Это аномальное сокращение объема, ведь большинство веществ расширяется во время плавления. Снижению температуры замерзания способствует увеличение давления.
- Зависимость молярного объема жидкой воды от давления и температуры показывает крайности. Плотность жидкой воды имеет максимум при 3,98 ° С.
- Коэффициент теплового расширения α жидкой воды на порядок меньше по сравнению с другими молекулярными жидкостями. Изотермическая сжимаемость χT показывает, что для молекулярной жидкости вода довольно несжимаема.
- Динамическая вязкость воды выше, чем у сопоставимых, не связанных водородом жидкостей. Более того, зависимость вязкости от давления аномальна: вязкость уменьшается с давлением и достигает минимума около 60 МПа (это давление эквивалентно толще воды в 6 км).
- Поверхностное натяжение воды выше, чем у других жидкостей, включая большинство других жидкостей, связанных водородом. В диапазоне температур от 0 до 130°С вода жидкая.
- Теплопроводность увеличивается с ростом температуры. Жидкая вода обладает высокой удельной теплоемкостью при постоянном давлении, которое изменяется незначительно до 100°C.
- Энтальпия испарения воды аномально высока. Аналогично удельной теплоемкости, она почти в четыре раза выше, чем для других сопоставимых жидкостей, не связанных с водородом. Эта разница приписывается водородной связи. Кроме того, энтальпия испарения воды очень велика по сравнению с энтальпией таяния.
Тот факт, что вода увеличивается в объеме при замерзании,
приводит ко многим последствиям в природе. Именно вода и ее свойство легко
проникать в расщелины скал, когда она замерзает, приводит к разрушению скал.
Постепенно происходит физическое и химическое выветривание скальных пород. И, в
конечном итоге, физические свойства и химические функции воды сформировали
почву на нашей планете.
Тот факт, что вода имеет самую высокую плотность при 4°С, а
не в точке замерзания, имеет важное значение для термического расслоения и
циркуляции воды в природе. Это химико-физическое свойство воды приводит к
замерзанию водоемов от их поверхности в направлении дна. Это важно не только
для жизни внутренних водоемов, но и для океанов. Если бы самые холодные районы
океанов должны были замерзать снизу-вверх, то солнечной энергии, полученной за
время лета, было бы достаточно только для оттаивания самого верхнего слоя. Так
осуществляется круговорот энергии и материи, которая опирается на циркуляции
океанов частично или даже полностью.
Огромная удельная теплоемкость воды ответственна за его
способность хранить огромное количество энергии. Таким образом, водные потоки,
например, Гольфстрим, способны нести огромное количество тепла из более теплых
климатических зон в более холодные. Таким образом, океаны работают как огромные
термостаты. Не только климат Земли, но и температурное регулирование живых
организмов зависит от высокой теплоемкости воды. Это способствует, например,
поддержанию постоянной температуры тела у теплокровных организмов. Кроме того,
относительно высокая теплопроводность воды предотвращает серьезные локальные
колебания температуры.
Абсолютно чистая вода имеет электрическую проводимость 0,03
мкСм / см это связано с автопротолизом. Электропроводность, однако, на реальных
водоемах значительно выше, из-за растворенных ионных компонентов. Вода, будучи
сильным диэлектриком (водный диэлектрик – константа), является одним из самых
лучших растворителей для солей и газов, которые способны к сольволизу с
последующей диссоциацией (например, CO2).
Еще одна особенность воды, которая важна для
гидрологического цикла — ее энтальпия испарения. С этим тесно связана летучесть
воды. Она определяет количество воды, которое переходит в газовую фазу и может
транспортироваться в атмосферу.
Таким образом, можно сделать вывод, что вода уникальна в
физическом и химическом плане. Особые свойства воды сделали ее колыбелью и
абсолютным условием жизни на Земле. Зная основные характеристики этого
вещества, можно делать вывод: благодаря каким своим химическим и физико-химическим
свойствам вода стала жидкой основой жизни.
Вода — единственное вещество на Земле, которое существует в природе во всех трёх агрегатных состояниях — жидком, твёрдом и газообразном.
Плавление льда при атмосферном давлении сопровождается уменьшением объёма на 9%.Аномально изменяется и плотность воды с изменением температуры. Вначале так же, как и у других веществ, с понижением температуры она увеличивается, но достигнув максимума при 4°С, начинает уменьшаться. Поэтому более тяжелая вода с температурой 4 °С перемещается в глубину, а лед остается на поверхности и изолирует из-за своей плохой теплопроводности воду от дальнейшего замерзания. «Аномальное» поведение воды объясняется ее способностью образовывать ассоциаты за счёт водородных связей, на разрыв которых требуется дополнительная энергия. При образовании ассоциатов, между молекулами воды образуются «пустоты».Ниже 4°С их количество уже приводит к тому, что плотность начинает уменьшаться. У льда, в котором каждая молекула воды связана водородными связями с четырьмя другими, размеры «пустот» превышают размеры молекул воды и плотность его небольшая. При плавлении водородные связи разрушаются, «пустоты» заполняются «одиночными» и «сдвоенными» молекулами воды — плотность возрастает.
Высокая полярность молекул воды обуславливает также её большую диэлектрическую проницаемость и способность растворять полярные вещества («подобное в подобном»).
Температурный коэффициент объёмного расширения льда и жидкой воды отрицателен при температурах соответственно ниже -210°С и + 3,98 С.
Теплоёмкость при плавлении возрастает почти вдвое и в интервале от О 0 С до 100° С почти не зависит от температуры.
Вода имеет незакономерно высокие температуры плавления и кипения в сравнении с другими водородными соединениями элементов главной подгруппы VI группы таблицы Менделеева.
теллуроводород Н2Те | селеноводород H2Se | сероводород H2S | вода Н2О | |
t плавления | -510С | -640С | -82°С | 00С |
t кипения | -40С | -420С | -610С | 1000С |
Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему так велика теплоёмкость воды. Благодаря этой особенности вода формирует климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. Нагреваясь, она поглощает тепло, остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла, и тем самым «выравнивает» климат. Особенно заметно на формирование климата материков влияют морские течения, образующие в каждом океане замкнутые кольца циркуляции.
Водяной пар создаёт мощный «парниковый эффект», который задерживает до 60% теплового излучения нашей планеты, не даёт ей охлаждаться. По расчётам М.И.Будыко, при уменьшении содержания водяного пара в атмосфере вдвое средняя температура поверхности Земли понизилась бы более чем на 5 0 С (с 14,3 0 до 9 0 С).
На смягчение земного климата, в частности на выравнивание температуры воздуха в переходные сезоны — весну и осень, заметное влияние оказывают огромные величины скрытой теплоты плавления и испарения воды.
В 1932 году американцы Г. Юри и Э.Осборн обнаружили, что даже в самой чистой воде, которую только можно получить в лабораторных условиях, содержится незначительное количество какого-то вещества, выражающегося, по-видимому, той же химической формулой Н2О, но обладающего молекулярным весом 20 вместо веса 18, присущего обычной воде. Юри назвал это вещество тяжёлой водой. Большой вес тяжёлой воды объясняется тем, что её молекулы состоят из атомов водорода с удвоенным атомным весом по сравнению с атомами обычного водорода. Двойной вес этих атомов в свою очередь обусловливается тем, что их ядра содержат, кроме единственного протона, составляющего ядро обычного водорода, ещё один нейтрон. Тяжёлый изотоп водорода получил название дейтерия (D или 2Н), а обычный водород стали называть протием. Тяжёлая вода, окись дейтерия, выражается формулой D2O.
Вскоре был открыт третий, сверхтяжёлый изотоп водорода с одним протоном и двумя нейтронами в ядре, который был назван тритием (Т или Н). В соединении с кислородом тритий образует сверхтяжёлую воду Т2О с молекулярным весом 22.
В природных водах содержится в среднем около 0,016% тяжёлой воды. Тяжёлая вода внешне похожа на обычную воду, но по многим физическим свойствам отличается от неё. Точка кипения тяжёлой воды 101,4° С, точка замерзания + 3,8 С. Тяжёлая вода на 11% тяжелее обычной. Удельный вес тяжёлой воды при температуре 250 С равен 1,1. Она хуже ( на 5 — 15% ) растворяет различные соли. И в физиологическом отношении тяжёлая вода воздействует на живое вещество иначе: в отличие от обычной воды, обладающей живительной силой, тяжелая вода совершенно инертна. Семена растений, если их поливать тяжёлой водой, не прорастают; головастики, микробы, черви, рыбы в тяжёлой воде не могут существовать; если животных поить одной тяжёлой водой, они погибнут от жажды. Тяжёлая вода — это мёртвая вода.
Имеется ещё один вид воды, отличающийся по физическим свойствам от обычной воды, — это омагниченная вода. Такую воду получают с помощью магнитов, вмонтированных в трубопровод, по которому течет вода. Омагниченная вода изменяет свои физико-химические свойства: скорость химических реакций в ней увеличивается, ускоряется кристаллизация растворённых веществ, увеличивается слипание твёрдых частиц примесей и выпадение их в осадок с образованием крупных хлопьев (коагуляция). Омагничивание успешно применяется на водопроводных станциях при большой мутности забираемой воды. Она позволяет также быстро осаждать загрязненные промышленные стоки. ВОДА — одно из главных богатств человечества на Земле
V АНОМАЛИИ ВОДЫ
Обычная вода на самом деле является загадочной жидкостью, поскольку многие ее свойства {плотность, сжимаемость, теплоемкость) являются аномальными — не похожими на свойства большинства других жидкостей. Причина этого заключается в особой структуре воды, обусловленной водородными связями между ее молекулами, которая изменяется с температурой или давлением.
Вода в нашей жизни — самое обычное и самое распространенное вещество. Однако с научной точки зрения это самая необычная, самая загадочная жидкость. Пожалуй, только жидкий гелий может соперничать с ней. Но необычные свойства жидкого гелия (такие, как сверхтекучесть) проявляются при очень низких температурах (вблизи абсолютного нуля) и обусловлены специфическими квантовыми законами. Поэтому жидкий гелий — это экзотическое вещество. Вода же в нашем сознании является прообразом всех жидкостей, и тем более удивительно, когда мы называем ее самой необычной. Но в чем же заключается необычность воды? Дело в том, что трудно назвать какое-либо ее свойство, которое не было бы аномальным, то есть ее поведение (в зависимости от изменения температуры, давления и других факторов) существенно отличается от такового у подавляющего большинства других жидкостей, у которых это поведение похоже и может быть объяснено из самых общих физических принципов. К таким обычным, нормальным жидкостям относятся, например, расплавленные металлы, сжиженные благородные газы (за исключением гелия), органические жидкости (бензин, являющийся их смесью, или спирты).
То, что обычная вода представляет собой еще весьма плохо изученное вещество, объясняется не только сложностью и неопределенностью ее структуры, но и тем, что это жидкое вещество. Значительно легче, нежели жидкое, исследовать твердое вещество или газ, так как в первом молекулы четко упорядочены, а во втором — они слабо взаимодействуют и обладают большой свободой передвижения. Ответа на вопрос: почему существуют две формы конденсированного из газа состояния вещества — жидкое и твердое, — близкие по плотности и энергии межмолекулярного взаимодействия и колоссально отличающиеся по кинетике межмолекулярного взаимодействия, пока еще нет. Не создано теорий, которые адекватно описывали бы жидкое состояние. Не разработана также теория плавления — перехода от порядка к беспорядку в системах с близкими плотностями и энергиями межмолекулярного взаимодействия. Поэтому, например, лед изучен лучше, чем вода. Не получена в лабораториях и абсолютно чистаявода, ее свойства до сих пор остаются загадкой.
Свойство | Аномалия | Значение |
Летучесть | Наименьшая среди соединении водорода с элементами подгруппы кислорода | Существенна для физиологии клетки: медленное снижение влажности различных материалов. |
Скрытая теплота плавления и испаения. | Наиболее высокая из всех твердых и жидких веществ, за исключением аммиака; с повышением температуры несколько снижается (до 40 °С), затем — возрастает | Термостатирующий эффект в технологических процессах, перенос тепла водными течениями в природе, способствует сохранению постоянной температуры тела |
Температура замерзания | Наиболее высокая, за исключением аммиака | Термостатирующий эффект в точке замерзания. Очень важна для сохранения теплового и водного баланса в атмосфере. |
Температура кипения | Наиболее высокая из всех жидкостей | Большие затраты тепла на испарение в производственных процессах; экономия возможна при утилизации тепла, выделяющегося при конденсации пара |
Теплопровод-ность | Наиболее высокая из всех жидкостей | Играет роль в теплообменной аппаратуре и процессах малого масштаба, например происходящих в живых клетках |
Растворитель | Растворяет многие вещества в больших количествах, чем другие жидкости | Используется в технике как основной растворитель, связывает между собой явления физические и биологические |
Плотность | Наибольшая при +4 °С | При замерзании водоемов, нижний слой воды, как наиболее тяжелый, находится при температуре +4 °С. При этом не замерзает и вода в живых организмах. |
Вязкость | Уменьшается при увеличении давления | Обеспечивает большую подвижность глубоко в недрах планеты, где давление достигает огромных значений |
АНОМАЛИЯ ПЛОТНОСТИ
Всем известна аномалия плотности. Она двоякая. Во-первых, после таяния льда плотность увеличивается, проходит через максимум при 4 0 С и только затем уменьшается с ростом температуры. В обычных жидкостях плотность всегда уменьшается с температурой. И это понятно. Чем больше температура, тем больше тепловая скорость молекул, тем сильнее они расталкивают друг друга, приводя к большей рыхлости вещества. Разумеется, и в воде повышение температуры увеличивает тепловую скорость молекул, но почему-то это приводит в ней к понижению плотности только при высоких температурах.
Вторая аномалия плотности состоит в том, что плотность воды больше плотности льда (благодаря этому лед плавает на поверхности воды, вода в реках зимой не вымерзает до дна и т.д.). Обычно же при плавлении плотность жидкости оказывается меньше, чем у кристалла. Это тоже имеет простое физическое объяснение. В кристаллах молекулы расположены регулярно, обладают пространственной периодичностью — это свойство кристаллов всех веществ. Но у обычных веществ молекулы в кристаллах, кроме того, плотно упакованы. После плавления кристалла регулярность в расположении молекул исчезает, и это возможно только при более рыхлой упаковке молекул, то есть плавление обычно сопровождается уменьшением плотности вещества. Такого рода уменьшение плотности очень мало: например, при плавлении металлов она уменьшается на 2 — 4%. А плотность воды превышает плотность льда сразу на 10%! То есть скачок плотности при плавлении льда аномален не только по знаку, но и по величине.
ПЕРЕОХЛАЖДЕННАЯ ВОДА
В последнее время много внимания уделяется изучению свойств переохлажденной воды, то есть остающейся в жидком состоянии ниже точки замерзания 00 С. (Переохладить воду можно либо в тонких капиллярах, либо — еще лучше — в виде эмульсии: маленьких капелек в неполярной среде — «масле»). Что же происходит с аномалией плотности при переохлаждении воды? Она ведет себя странно . С одной стороны, плотность воды сильно уменьшается по мере переохлаждения (то есть первая аномалия усиливается), но, с другой стороны, она приближается к плотности льда при понижении температуры (то есть вторая аномалия ослабевает).
АНОМАЛИЯ СЖИМАЕМОСТИ
Вот еще пример аномалии воды: необычное температурное поведение ее сжимаемости, то есть степени уменьшения объема при увеличении давления. Обычно сжимаемость жидкости растет с температурой: при высоких температурах жидкости более рыхлы (имеют меньшую плотность) и их легче сжать. Вода обнаруживает такое нормальное поведение только при высоких температурах. При низких же сжимаемость ведет себя противоположным образом, в результате чего в ее температурном поведении появляется минимум при 450 С.