Через какие органы выделяются конечные продукты расщепления белков

Анонимный вопрос  · 7 сентября 2018

775

Если женщина внезапно замолкла, значит, она хочет что-то сказать

Попадая в организм человека, белки распадаются на аминокислоты, которые используются организмом в образовании собственных белков. Те аминокислоты, которые не пригодились, преобразовываются в азотистые вещества, которые выводятся вместе с мочей и потом.

Какие продукты содержат белок?

Всего понемногу… Увлекаюсь Мексикой, теннисом и игрой на барабанах.

Белок может быть растительным и животного происхождения. Еда животного происхождения с белком — молочные продукты, мясные, субпродукты, яйца. Растительные — бобовые (горох, нут, фасоль, чечевица), кунжут, тофу, орехи, семечки.

Прочитать ещё 8 ответов

Какой продукт имеет наибольшее количество белка на 100 грамм из всех продуктов в мире?

Эксперты в области спортивного питания. Интернет-магазин fitbar.ru  · fitbar.ru

Лидер по содержанию белка на 100 г – это спирулина. Протеины занимают 70% ее состава – 70 г на 100 г.

Для сравнения: в 100 г курицы около 24 г белка, в 100 г говядины – 19 г.

То есть 100 г спирулины равноценно почти 300 г куриного мяса. По этому показателю она также опережает соевые продукты, содержащие до 35% белка.

Спирулина применяется спортсменами как источник аминокислот, минералов и микроэлементов. Еще в ней содержится фенилоланин, который подавляет аппетит. Уже через месяц введения спирулины в рацион можно заметить положительные результаты в первую очередь в снижении веса.

Но, несмотря на высокое содержание белка, применение спирулины не всегда рационально. Ее дневная норма составляет до 3 г, а в них всего 2 г белка. В то время как организму нужно 1,5-2 г на 1 кг массы тела. Увеличивать порцию спирулины не рекомендуется, поскольку так будет избыток бета-каротина, которого в водоросли в 25 раз больше, чем в моркови.

Поэтому для спортсменов продуктом с максимальным содержанием белка все-таки остается мясо, соевые продукты, а за ними – крупы и орехи.

Прочитать ещё 4 ответа

В чем отличие белка мяса, белка молока, белка в бобовых, белка в крупах?

Врач-диетолог, член Национальной ассоциации диетологов и нутрициологов

Белки разных продуктов отличаются аминокислотным составом. Белки мяса, птицы, рыбы, яиц, молочных продуктов и сои полноценны по своему составу, то есть содержат все незаменимые аминокислоты. Растительные белки, содержащиеся в бобовых и в крупах, содержат лишь некоторые из незаменимых аминокислот, поэтому важно их правильно сочетать, чтобы удовлетворить потребность.

Также белки отличаются степенью усвоения в организме. К примеру, белки из бобовых усваиваются хуже, чем белки животного происхождения. Происходит это из-за того, что в бобовых содержится вещество, блокирующее пищеварительные ферменты человека. Именно поэтому после употребления бобовых возможно вздутие и дискомфорт в кишечнике. Чтобы этого избежать, необходима хорошая термическая обработка.

Прочитать ещё 2 ответа

В чём принципиальная разница между «растительными» и «животными» белками?

Пищевые белки можно разделить на белки животного и растительного происхождения. Животные белки содержатся в мясе и птице, рыбе и морепродуктах, яйцах и молочных продуктах, а белки растительные — в сое, злаковых, бобовых и орехах.

В отличие от белков животного происхождения, растительные белки имеют неполный набор необходимых организму человека незаменимых аминокислот (изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин, гистидин), т.е. являются неполноценными.

Прочитать ещё 1 ответ

Чем полезен животный белок?

Библиотекарь, дачник, волонтер по работе с беспризорными животными

Поскольку идеальных для человека белков в природе нет, то специалисты считают, что все продукты надо комбинировать. Самое большое количество незаменимых для человека аминокислот и лучшее их соотношение находится в животных белках. Животные белки способствуют еще и более полному усвоению растительных белков, минеральных веществ и витаминов. Поэтому основа правильного питания — животный белок. А к ним уже можно добавлять все остальные. Кстати, самые полезные из животных белков — это белок яиц (усваивается на 100%) и молока.

Прочитать ещё 1 ответ

Источник

БЕЛКИ — полимеры, состоящие из аминокислот, связанных между собой пептидной связью.

В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.

Функции белков:

1.    Основной строительный материал в организме.
2.    Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.
3.    Обеспечивают нормальное функционировании иммунной системы.
4.    Обеспечивают состояние «аппарата наследственности».
5.    Являются катализаторами всех биохимических метаболических реакций организма.

Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита аминокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (резерв – 45 г: 40 г в мыщцах, 5 г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.

Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот.

Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.

Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.

Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин, незаменимыми условно — аргинин и гистидин. Все эти аминокислоты человек получает только с пищей.

Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин; условно заменимые — аргинин и гистидин.

Читайте также:  Какие продукты помогают вырабатывать грудное молоко

Белки, содержащие полный набор незаменимых аминокислот, называются полноценными и имеют максимальную биологическую ценность (мясо, рыба, яйца, икра, молоко, грибы, картофель).

Белки, в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.

Кроме основной функции белков — белки как пластический материал, он может использоваться и как источник энергии при недостатке других веществ (углеводов и жиров). При окислении 1 г белка освобождается около 4,1 ккал.

При избыточном поступлении белков в организм, превышающем потребность, они могут превращаться в углеводы и жиры. Избыточное потребление белка вызывают перегрузку работы печени и почек, участвующих в обезвреживании и элиминации их метаболитов. Повышается риск формирования аллергических реакций. Усиливаются процессы гниения в кишечнике — расстройство пищеварения в кишечнике.

Дефицит белка в пище приводит к явлениям белкового голодания — истощению, дистрофии внутренних органов, голодные отеки, апатия, снижению резистентности организма к действию повреждающих факторов внешней среды, мышечной слабости, нарушении функции центральной и периферической нервной системы, нару- шению ОМЦ, нарушение развития у детей.

Суточная потребность в белках — 1 г/кг веса при условии достаточного содержания незаменимых аминокислот (например, при приеме около 30 г животного белка), старики и дети — 1,2-1,5 г/кг, при тяжелой работе, росте мышц — 2 г/кг.

ЖИРЫ (липиды) — органические соединения, состоящие из глицерина и жирных кислот.

Функции жиров в организме:

•  являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;

•  являются компонентом структурных элементов клетки — ядра, цитоплазмы, мембраны;

•  депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений.

Различают нейтральные жиры (триацилглицеролы), фосфолипиды, стероиды (холестерин).

Поступившие с пищей нейтральные жиры в кишечнике расщепляются до глицерина и жирных кислот. Эти вещества всасываются — проходят через стенку тонкого кишечника, вновь превращаются в жир и поступают в лимфу и кровь. Кровь транспортирует жиры в ткани, где они используются в качестве энергетического и пластического материала. Липиды входят в состав клеточных структур.

Уровень жирных кислот в организме регулируется как отложением (депонированием) их в жировой ткани, так и высвобождением из нее. По мере увеличения уровня глюкозы в крови жирные кислоты под влиянием инсулина, депонируются в жировой ткани.

Высвобождение жирных кислот из жировой ткани стимулируется адреналином, глюкагоном и соматотропым гармоном, тормозится — инсулином.

Жиры, как энергетический материал используется главным образом при выполнении длительной физической работы умеренной и средней интенсивности (работа в режиме аэробной производительности организма). В начале мышечной деятельности используются преимущественно углеводы, но по мере уменьшения их запасов начинается окисление жиров.

Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в избытке в организм углеводы и белки превращаются в жир. При голодании жиры, расщепляясь, служат источником углеводов.

Суточная потребность в жирах — 25-30% от общего числа калорий. Суточная потребность незаменимых жирных кислот около 10 г.

Жирные кислоты являются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания.

К незаменимым жирным кислотам, которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10–12 г).

Линолевая и лоноленовая кислоты содержатся в растительных жирах, арахидовая — только в животных.

Недостаток незаменимых жирных кислот приводит к нарушению функций почек, кожным нарушениям, повреждениям клеток, метаболическим расстройствам. Избыток незаменимых жирных кислот приводит к повышенной потребности токоферола (витамина Е).

УГЛЕВОДЫ — органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии.

Функции углеводов в организме:

•    Являются непосредственным источником энергии для организма.

•    Участвуют в пластических процессах метаболизма.

•    Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды — углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза).

Дисахариды — углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза).

Полисахариды — углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

На углеводы должно приходиться до 50 – 60% энергоценности пищевого рациона.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются ) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.

В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Содержание гликогена в печени составляет 150–200 г.

Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом «депо».

Около 70% углеводов пищи окисляется в тканях до воды и двуокиси углерода.

Углеводы используются организмом либо как прямой источник тепла (глюкозо–6–фосфат), либо как энергетический резерв (гликоген);
Основные углеводы – сахара, крахмал, клетчатка – содержатся в растительной пище, суточная потребность в которой у человека составляет около 500 г (минимальная потребность 100–150 г/сут).

При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.

Читайте также:  Какой продукт укрепляет сосуды носа

Материал подготовлен на основе информации из открытых источников

Источник

Конечные продукты обмена белков. Процессы в результате которых они образуются . хим. Природа. Выделение. Конечными продуктами распада белков в организме являются вода, углекислый газ и азотсодержащие вещества: аммиак, мочевая кислота и др. Аммиак, являющийся для организма вредным веществом, в печени превращается в мочевину, Продукты распада белков, как и других питательных веществ, выводятся из организма наружу через органы выделения.

31) Образование химическая природа прямого и непрямого билирубина. Количественное определение билирубина в крови. Диагностическое определение билирубина в сыворотке крови при болезни печени и крови.

Билирубин – желто-красный пигмент, продукт распада гемоглобина и некоторых других компонентов крови. Билирубин находится в составе желчи. Анализ билирубина показывает, как работает печень человека, определение билирубина входит в комплекс диагностических процедур при многих заболеваниях желудочно-кишечного тракта. В сыворотке крови встречается билирубин в следующих формах: прямой билирубин и непрямой билирубин. Вместе эти формы образуют общий билирубин крови, определение которого имеет важное значение в лабораторной диагностике.
Нормы общего билирубина: 3,4 — 17,1 мкмоль/л – для взрослых и детей (кроме периода новорожденности) . У новорожденных билирубин высокий всегда — это так называемая физиологическая желтуха.

Норма прямого билирубина: 0 — 3,4 мкмоль/л.

Анализ билирубина может показать отклонение от нормы билирубина. В большинстве случаев изменение уровня билирубина — признак серьезных заболеваний в организме человека.

Повышенный билирубин – симптом следующих нарушений в деятельности организма:

недостаток витамина В 12
острые и хронические заболевания печени
рак печени
гепатит
первичный цирроз печени
токсическое, алкогольное, лекарственное отравление печени
желчнокаменная болезнь.
Если прямой билирубин выше нормы, то для врача эти показатели билирубина – повод поставить следующий диагноз:

острый вирусный или токсический гепатит
инфекционное поражение печени, вызванное цитомегаловирусом, вторичный и третичный сифилис
холецистит
желтуха у беременных
гипотиреоз у новорожденных.
Повышение билирубина может указать на необходимость дополнительного обследования организма.

3) Образование химическая природа прямого и непрямого билирубина. Количественное определение билирубина в крови. Диагностическое определение билирубина в сыворотке крови при болезни печени и крови.

3)Билирубин – желто-красный пигмент, продукт распада гемоглобина и некоторых других компонентов крови. Билирубин находится в составе желчи. Анализ билирубина показывает, как работает печень человека, определение билирубина входит в комплекс диагностических процедур при многих заболеваниях желудочно-кишечного тракта. В сыворотке крови встречается билирубин в следующих формах: прямой билирубин и непрямой билирубин. Вместе эти формы образуют общий билирубин крови, определение которого имеет важное значение в лабораторной диагностике.
Нормы общего билирубина: 3,4 — 17,1 мкмоль/л – для взрослых и детей (кроме периода новорожденности) . У новорожденных билирубин высокий всегда — это так называемая физиологическая желтуха.

Норма прямого билирубина: 0 — 3,4 мкмоль/л.

Анализ билирубина может показать отклонение от нормы билирубина. В большинстве случаев изменение уровня билирубина — признак серьезных заболеваний в организме человека.

Повышенный билирубин – симптом следующих нарушений в деятельности организма:

недостаток витамина В 12
острые и хронические заболевания печени
рак печени
гепатит
первичный цирроз печени
токсическое, алкогольное, лекарственное отравление печени
желчнокаменная болезнь.
Если прямой билирубин выше нормы, то для врача эти показатели билирубина – повод поставить следующий диагноз:

острый вирусный или токсический гепатит
инфекционное поражение печени, вызванное цитомегаловирусом, вторичный и третичный сифилис
холецистит
желтуха у беременных
гипотиреоз у новорожденных.
Повышение билирубина может указать на необходимость дополнительного обследования организма.

3)Биологическая роль воды и ее обмен в организме, регуляция обмена воды.

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции: Вода — универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая часть химических реакций в клетке протекает в водных растворах. Ее молекулы участвуют во многих химических реакциях, например при образовании илигидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода. Система регуляции обмена воды в организме включает центральное, афферентное и эфферентное звенья. • Центральное звено системы контроля обмена воды — центр жажды (водорегулирующий). Его нейроны находятся в основном в переднем отделе гипоталамуса. Этот центр связан с областями коры большого мозга, участвующими в формировании чувства жажды или водного комфорта. • Афферентное звено системы включает чувствительные нервные окончания и нервные волокна от различных органов и тканей организма (слизистой оболочки полости рта, сосудистого русла, желудка и кишечника, тканей), дистантные рецепторы (главным образом зрительные и слуховые).

4)биохимия печени функции роль в обмене веществ функциональные проблемы печени

Печень самый крупный из паренхиматозных органов. Она выполняет ряд ключевых функций.

1) Принимает и распределяет вещества, поступающие в организм из пищеварительного тракта, которые приносятся с кровью по воротной вене. Эти вещества проникают в гепатоциты, подвергаются химическим превращениям и в виде промежуточных или конечных метаболитов поступают в кровь и разносятся в другие органы и ткани.

Читайте также:  В каких продуктах содкржится витамин д

2) Служит местом образования желчи.

3) Синтезирует вещества, которые используются в других тканях.

4) Инактивирует экзогенные и эндогенные токсические вещества, а также гормоны.

Роль печени в обмене веществ

Печень в организме человека выполняет целый ряд разнообразных и жизненно важных функций. Печень участвует практически во всех видах обмена: белко­вом, липидном, углеводном, водно-минеральном, пиг­ментном.

Участие печени в белковом обменехарактеризует­ся тем, что в ней активно протекают синтез и рас­пад белков, имеющих важное значение для организма. В печени синтезируется за сутки около 13-18 г белков. Из них альбумины, фибриноген, протромбин образуются только и печени. Кроме того, здесь синтезируется до 90% альфа-глобулинов и около 50% гамма-глобулинов организма. В связи с этим при заболеваниях печени в ней либо снижается синтез белков и это приводит к уменьшению количества белков крови, либо происходит образование белков с измененными физико-химическими свойствами, в результате чего пони­жается коллоидная устойчивость белков крови и онилегче, чем в норме, выпадают в осадок при действии осадителей (солей щелочных и щелочноземельных металлов, тимола, сулемы и др.). Обнаружить изме­нение количества или свойств белков можно с помо­щью проб на коллоидоустойчивость или осадочных проб, среди которых часто используются пробы Вельтмана, тимоловая и сулемовая.

Печень является основным местом синтеза белков, обеспечивающих процесс свертывания крови (фибри­ногена, протромбина и др.). Нарушение их синтеза, как и недостаточность витамина К, развивающаяся вследствие нарушения желчеотделения и желчевыделения, приводят к геморрагическим явлениям.

Активно протекающие в печени процессы превра­щений аминокислот (переаминирование, дезаминирование и др.) при ее тяжелых поражениях существенно изменяются, что характеризуется увеличением кон­центрации свободных аминокислот в крови и выделе­нием их с мочой (гипераминоацидурии). В моче также могут быть обнаружены кристаллы лейцина и тиро­зина.

Образование мочевины происходит только в печени и нарушение функций гепатоцитов приводит к увели­чению ее количества в крови, что оказывает отрица­тельное влияние на весь организм и может проявить­ся, например, печеночной комой, нередко заканчи­вающейся гибелью больного.

Обменные процессы, протекающие в печени, ката­лизируются различными ферментами, которые при ее заболеваниях выходят в кровь и поступают в мочу. Важно, что выход ферментов из клеток происходит не только при их повреждении, но и при нарушении проницаемости клеточных мембран, имеющем место в самом начальном периоде заболевания, поэтому изменение ферментных спектров является одним из важнейших диагностических показателей оценки со­стояния больного еще в доклинический период. На­пример, при болезни Боткина уже в дожелтушный период отмечено увеличение в крови активности АлТА, ЛДГ и АсТА, а при рахите — увеличение уров­ня щелочной фосфатазы.

Печень выполняет важнейшую для организма ан­титоксическую функцию. Именно в ней происходит обезвреживание таких вредных веществ, как индол, скатол, фенол, кадаверин, билирубин, аммиак, продук­ты обмена стероидных гормонов и др. Пути обезвре­живания токсических веществ различны: аммиак пре­вращается в мочевину; индол, фенол, билирубин и дру­гие образуют безвредные для организма соединения с серной или глюкуроновой кислотами, которые выво­дятся с мочой.

Роль печени в углеводном обменеопределяется прежде всего ее участием в процессах синтеза и рас­пада гликогена. Это имеет большое значение для регу­ляции уровня глюкозы в крови. Кроме того, в печени активно протекают процессы взаимопревращения мо­носахаридов. Галактоза и фруктоза превращается в глюкозу, а глюкоза может стать источником для син­теза фруктозы.

В печени протекает также процесс глюконеогенеза, при котором из неуглеводных веществ — молочной кислоты, глицерина и гликогенных аминокислот — происходит образование глюкозы. Печень участвует и в регуляции углеводного обмена путем контроля за уровнем инсулина в крови, так как в печени содержится фермент инсулиназа, расщепляющая инсулин в зависимости от потребности организма.

Энергетические потребности самой печени обес­печиваются за счет распада глюкозы, во-первых, по анаэробному пути с образованием лактата и, во-вто­рых, по пептозному пути. Значение указанных процес­сов заключается не только и образовании НАДФН2 для различных биосинтезов, но и возможности ис­пользовать продукты распада углеводов в качестве исходных веществ для различных обменных процессов.

В обмене липидов паренхиматозные клетки печени играют ведущую роль. Непосредственно в гепатоцитах протекают процессы биосинтеза холестерина, желчных кислот, образование фосфолипидов плазмы, кетоно­вых тел и липопротеидов. С другой стороны, печень контролирует обмен липидов всего организма. Хотя триацилглицерины составляют только 1% от общей массы печени, но именно ею регулируются процессы синтеза и транспорта жирных кислот организма. В пе­чень, поступает большое количество липидов, которые «сортируются» в зависимости от потребностей органов и тканей. При этом в одних случаях может усили­ваться их распад, до конечных продуктов, а в дру­гих желчные кислоты могут идти на синтез фосфо­липидов и кровью доставляться к тем клеткам, где они необходимы для образования мембран, или же липопротеидами транспортироваться к клеткам, кото­рые испытывают недостаток в энергии, и т. д.

Немаловажное значение имеет печень и в водно-минеральном обмене. Так, она является депо крови, а, следовательно, и внеклеточной жидкости, в ней мо­жет накапливаться до 20% всего объема крови. Кроме того, для некоторых минеральных веществ печень слу­жит местом накопления и запасания. К ним относятся натрий, магний, марганец, медь, железо и др. В печени идет синтез белков, транспортирующих минеральные вещества по крови: трансферрина, церулоплазмина и др. Наконец, печень — это место инактивации гор­монов, обеспечивающих регуляцию водно-минераль­ного обмена (альдостерона, вазопрессина).Гепатит – это воспаление печени. По происхождению гепатиты подразделяются на вирусные (гепатит А, В, С, гепатит при желтой лихорадке, при СПИДе) и невирусные.Гепатоз– острое или хроническое заболевание печени невоспалительного характера. В основе его лежат патологические изменения функциональных клеток печени – гепатоцитов.

Источник