Благодаря какому свойству графит идет на изготовление карандашей

Благодаря какому свойству графит идет на изготовление карандашей thumbnail

Исследование физических свойств простого карандаша

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Мельникова З.В. 1

1Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа №154 г. Челябинска»

Быкова И.В. 1

1Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа №154 г. Челябинска»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

ВВЕДЕНИЕ

Вам приходилось когда-нибудь сравнивать себя с простым карандашом? Это получилось очень тонко и верно у бразильского прозаика и поэта Пауло Коэльо в книге «Подобно реке…». Бабушка беседует с внуком и дает ему советы. Вот некоторые из них:

Чтобы писать, мне приходится время от времени затачивать карандаш. Эта операция немного болезненна для него, но зато после этого карандаш пишет более тонко. Следовательно, умей терпеть боль, помня, что она облагораживает тебя.

Если пользоваться карандашом, всегда можно стереть резинкой то, что считаешь ошибочным. Запомни, что исправлять себя — не всегда плохо. Часто это единственный способ удержаться на верном пути.

В карандаше значение имеет не дерево, из которого он сделан, и не его форма, а графит, находящийся внутри. Поэтому всегда думай о том, что происходит внутри тебя.

Карандаш всегда оставляет за собой след. Так же и ты оставляешь после себя следы своими поступками, и поэтому обдумывай каждый свой шаг[3].

Прочтение этой книги вызвало у меня желание узнать больше интересных фактов о простом карандаше. Да и графит, который входит в состав грифеля простого карандаша, является основой для производства графена – перспективного материала как основы наноэлектроники. Поэтому изучение физических свойств простого карандаша является актуальным.

Объект исследования: простой карандаш и материал для его изготовления – графит.

Предмет исследования: физические свойства графита, который входит в состав карандаша.

Цель работы: раскрыть свойства и возможности простого карандаша, исследовать физические свойства грифелей простых карандашей.

Задачи: изучить различные источники информации о карандашах; изучить виды, свойства карандаша и материала – графита.

Гипотеза: стержень простого карандаша обладает многими замечательными свойствами, которые имеют большое значение в промышленности, повседневной жизни, нанотехнологиях: можно рисовать под водой, на морозе, проводит электрический ток, не электризуется.

Методы: работа с научной литературой, наблюдение, эксперимент, анализ результатов эксперимента.

Для выполнения работы использованы приборы и материалы: вольтметр учебный с пределом измерений 6В, батарейки 2х1,5 В, соединительные провода, простые карандаши разной твердости, рычажные весы с разновесами, штангенциркуль, динамометр, штатив, электрометр, лоскуты шелковой, шерстяной ткани.

Новизна и практическая значимость работы заключается в следующем: подобраны экспериментальные задачи, которые формируют метапредметные умения и навыки; теоретические положения и результаты экспериментальной работы, проделанной мной, могут быть взяты за основу при разработке курса внеурочной деятельности или элективного курса.

ОСНОВНОЕ СОДЕРЖАНИЕ

Происхождение современного карандаша

В «Толковом словаре русского языка» Д. Н. Ушакова про карандаш написано так: «Карандаш – это тонкая палочка графита, сухой краски и т. п., обычно вделанная в дерево, для письма, черчения и рисования» [6].

С начала XIII века, история карандаша знает «серебряный карандаш», которым художники пользовались при рисовании. Он представлял собой тонкую серебряную проволоку, припаянную к ручке. Этот карандаш имел свои характерные особенности – написанное им нельзя было стереть, а его штрихи серого цвета, через некоторое время, приобретали коричневый оттенок.

История карандаша знает и «свинцовый карандаш», который часто использовался для наброска портрета потому, что он давал четкий, но едва заметный штрих.

Карандаш под названием «итальянский» стал известен в XIV веке. Его стержень был изготовлен из глинистого чёрного сланца. Чуть позже, его стали изготавливать другим способом — порошок жжёной кости скрепляли растительным клеем.  «Итальянский карандаш» давал интенсивные и насыщенные линии.

Что интересно, в наше время иногда применяются художниками такие карандаши, для придания рисунку определённого эффекта. Первый документ, упоминающий о деревянном карандаше, датируется 1683 годом. А в 1719 году, в Германии, началось производство графитных карандашей. Путем смешивания графита с серой и клеем, немцы получали стержень не очень высокого качества, но его цена была не высокой.

История карандаша говорит, что изобретателями современного карандаша, независимо друг от друга, стали венский мастер Йозеф Хардмут и французский ученый Никола Жак Конте.

В 1790 году, смешав три компонента: пыль графита, глину и воду, Йозеф Хардмут получил смесь, которую обжог в печи. Изменяя в составе количество глины, он получал материал разной твердости. Подобным образом, получил стержень из пыли графита Никола Жак Конте в 1795 году. Он разработал технологию, по которой графит смешивался с глиной, и получался материал для производства качественного стержня. При помощи высоких температур достигалась высокая прочность, а различная твердость стержней достигалась изменением пропорций графита и глины.

Шестигранную форму карандаша придумал граф Лотар фон Фаберкастлв XIX веке, когда заметил, что карандаш круглой формы часто скатывается с наклонных поверхностей.

Механический карандаш был придуман в 1869 году американцем Алонсо Таунсенда Кроссом. Он заметил, что затачивая карандаш, мы попросту отправляем его две трети в отходы – это и натолкнуло его на мысль создать «безотходный» металлический карандаш. Такой карандаш состоял из металлической трубки и графитного стержня, который, по необходимости, выдвигался на нужную длину [4].

Свойства графита

Графит — аллотропная модификация углерода, наиболее устойчивая при обычных условиях. Графит — распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита.

Свойства графита хорошо изучены и находят широкое применение. Образуется графит в результате вулканической деятельности при высоких температурах, поэтому и находят его в природе в магматических горных породах, где содержание кристаллического графита может доходить до 50%. Крупное графитовое месторождение находится в Тунгусском каменноугольном бассейне, образовавшееся в результате высокотемпературного воздействия на уголь – так называемая скрытокристаллическая форма графита, содержание которого лежит в пределах от 60 до 80%.

Цвет графита варьирует от железо-черного до стального серого с характерным металлическим блеском. На ощупь минерал жирный, скользкий, пачкает пальцы и бумагу, при механическом воздействии расслаивается на отдельные чешуйчатые частицы. Именно это свойство графита позволяет применять его в карандашах.

По сравнению с алмазом графит обладает меньшей твердостью и плотностью, а также графит электропроводен. Его теплопроводность зависит от степени нагрева. Графит обладает чрезвычайной огнеупорностью, его температура сгорания — 38500С. Графит не плавится, а возгоняется при температуре 35000С, т.е. из твердого состояния переходит в газообразное, минуя жидкое состояние.

Применение графита

Техническое применение минерала чрезвычайно разнообразно и обусловлено свойствами графита, главным образом его огнеупорностью и электропроводностью. Так, в металлургии графит используется для производства тугоплавких тиглей, чехлов для термопар, емкостей для кристаллизации. В литейном производстве графитовый порошок используется в качестве антипригарной присыпки, а также для смазывания литейных форм.

Он также служит для изготовления электродов и нагревательных элементов электрических печей, скользящих контактов для электрических машин, анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников и колец электромашин, вкладышей для подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок.

Даже в атомной энергетике замечательные свойства графита находят свое применение, в первую очередь, это его способность замедлять нейтроны в реакторах.

Читайте также:  Какими свойствами обладает горчица

После облучения графита нейтронами его физические свойства изменяются: удельное электрическое сопротивление увеличивается, а прочность, твердость, теплопроводность уменьшаются на порядок. После отжига при 1000-2000°С свойства восстанавливаются до прежних значений.

В ракетостроении сопла ракетных двигателей и многие элементы теплозащиты также производятся с применением графита.

Его используют в химическом машиностроении – для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и для работы с активными средами. Графит используют также как наполнитель пластмасс, компонент составов для изготовления стержней для карандашей, при получении алмазов.

Перспективы использования графита. Графен.

Еще несколько десятилетий назад, заинтересовавшись особой структурой графита, ученые задумались о том, какими свойствами мог бы обладать тончайший — отдельный — его слой. Этот гипотетический слой и получил название «графен». Графен – ультратонкий, механически очень прочный, прозрачный, гибкий и электропроводящий материал.

Теплопроводность графена в 10 раз выше, чем у меди. Доля поглощенного света в широком интервале не зависит от длины волны.

За создание графена выходцам из России Константину Новоселову и Андрею Гейму была присуждена Нобелевская премия 2010 года по физике.
Он-то как раз не так уж и экзотичен. На любом письменном столе, если хорошенько поскрести, отыщется немножко графена. Точнее говоря, если взять в руки лежащий на столе карандаш и поскрести его графитовый грифель, то в отслоившихся чешуйках графита непременно найдутся тончайшие графеновые пленки. Они настолько тонки, что, сложив в стопку три миллиона таких пленок, мы получим слой графита толщиной в миллиметр.

Сам графит по своей структуре — это множество таких пленок, сложенных одна на другую. Каждая пленка состоит из бессчетных атомов углерода, расположенных в виде правильных шестиугольников. Соединяясь друг с другом, эти шестиугольники образуют кристаллическую решетку. Подобная структура обуславливает необычные свойства графита. Например, он проводит электрический ток в одном направлении – параллельно пленкам, и не пропускает в другом — перпендикулярно им [7].

Практическая часть

Эксперимент № 1. Изучение механических свойств грифеля при различной температуре.

Мы решили проверить, будет ли простой карандаш писать при низкой температуре. Для этого в морозильную камеру (где температура -18˚С) положили на 1 час простой карандаш, предварительно сделав рисунок. Когда мы достали из камеры холодильника простой карандаш, он оставлял на бумаге след, но чуть светлее, чем до испытания.

В кристаллической решетке графита атомы углерода располагаются в виде параллельных плоских слоев, которые относительно далеко находятся друг от друга, при этом атомы углерода в каждой плоскости имеют прочные межатомные связи. Поэтому связь между слоями значительно слабее, чем внутри слоя, и под воздействием внешних сил происходит скольжение – смещение одних слоев относительно других. Но при низкой температуре, расстояние между атомами сокращается, межмолекулярное притяжение увеличивается, слои решетки становятся ближе друг к другу, поэтому слои не так легко отрываются друг от друга, и карандаш пишет чуть светлее, чем при комнатной температуре [1].

Эксперимент № 2. Изучение механических свойств грифеля простого карандаша под водой.

В ёмкость с водой мы опустили кусок фанеры и в воде попробовали написать на нем простым карандашом. Когда мы вытащили из воды мокрый лист фанеры, то на нём хорошо видна надпись, которая была четкая и не растекалась.

Графит – твёрдое вещество, притяжение между частицами большое, а диффузия между твёрдым и жидким веществами проходит с небольшой скоростью. Поэтому молекулы воды не смогли разрушить кристаллическую решётку графита.

Эксперимент № 3. Определение плотности грифеля простого карандаша.

Масса грифеля, г

Длина грифеля, см

Диаметр сечения, см

Площадь сечения, см2

Объем грифеля, см3

Плотность грифеля, г/см3

0,2000

5,5

0,1500

0,0177

0,0974

2,0534

Отделили грифель простого карандаша от деревянной оболочки. Форму грифеля считаем цилиндрической. Массу грифеля определяем с помощью рычажных весов, длину грифеля с помощью линейки, а его толщину определяем с помощью штангенциркуля. По результатам эксперимента плотность грифеля равна 2,0534 г/см3. Из справочника: плотность графита 2,10 – 2,52 г/см3 [2].

Эксперимент № 4. Изучение электропроводности простого карандаша.

Собрали установку, состоящую из источника постоянного тока (батарейки), вольтметра, соединительных проводов, простого карандаша. В ходе выполнения работы использовались различные по твердости-мягкости простые карандаши.

№ п/п

Вид карандаша

Диаметр карандаша, см

Длина карандаша, см

Напряжение, В

 

М

0,6

18

1,6

 

0,6

18

2,4

 

ТМ

0,6

18

1,6

 

0,6

18

1,4

 

Т

0,6

18

1,2

 

ТМ

0,6

8,7

1,8

 

ТМ

0,8

18

2,6

 

ТМ

0,8

14

2,8

 

Цветной карандаш

0,6

18

Графит является проводником электрического тока, напряжение в цепи меняется в зависимости от длины и площади сечения грифеля: чем короче грифель, тем напряжение больше, и наоборот, чем грифель длиннее – тем напряжение меньше. Если площадь сечения больше, то и напряжение больше, значит, грифель является сопротивлением. Чем мягче карандаш, тем больше напряжение на участке цепи, содержащем карандаш. Грифель цветного карандаша не проводит электрический ток, так как в грифеле цветного карандаша графита нет, он выполнен из смеси белой глины и пигментов, или красителей.

При исследовании электрических свойств грифеля простого карандаша необходимо соблюдать элементарные правила техники безопасности:

— измерения проводить сухими руками;

— источник тока электрической цепи подключать в последнюю очередь;

— не включать собранную цепь без проверки и разрешения учителя;

— не касаться руками мест соединений;

— не использовать провода с нарушенной изоляцией;

— не допускать предельных нагрузок измерительных приборов.

Эксперимент № 5. Определение сопротивления грифеля механическим нагрузкам.

Измеряем длину грифеля – 5 см. Закрепляем его в лапке штатива и подвешиваем к его концу динамометр. Грифель сломался при нагрузке 2,4 Н.

Предел прочности грифеля составляет: σ = F/S; σ = 2,4 Н / 0,00000177 м2 = 1355930 Па

Эксперимент № 6. Исследование электризации грифеля простого карандаша.

Для того, чтобы проверить электризуется грифель простого карандаша или нет, мы взяли различные материалы: шёлк, шерсть, бумагу. Мы натерли грифель шелком и поднесли к электроскопу. На приборе стрелка не отклонилась, следовательно грифель не электризуется при натирании шелком. Затем опыт повторили с лоскутом шерстяной ткани и бумаги. Грифель не наэлектризовался.

Грифель простого карандаша не является проводником.

ЗАКЛЮЧЕНИЕ

В результате проведенных экспериментов я выяснила:

— простой карандаш пишет при низкой температуре чуть светлее, чем при комнатной температуре;

— грифель простого карандаша не электризуется;

— грифель простого карандаша пишет под водой;

— грифель простого карандаша проводит электрический ток; напряжение в цепи меняется в зависимости от длины и площади сечения грифеля;

— плотность грифеля простого карандаша 2,05 г/см3;

— предел прочности грифеля простого карандаша 1355930 Па

В ходе изучения литературы по данной теме и выполнения экспериментов моя гипотеза полностью подтвердилась: грифель простого карандаша обладает многими замечательными свойствами, которые имеют большое значение в промышленности, повседневной жизни, нанотехнологиях: можно рисовать под водой, на морозе, проводит электрический ток, не электризуется.

СПИСОК ЛИТЕРАТУРЫ:

Бокштейн, Б.С., Бокштейн С.3., Жуховицкий А.А. Термодинамика и диффузия в твердых телах / Б.С. Бокштейн, С.З. Бокштейн, А.А. Жуховицкий – М.: Металлургия, 1974.

Читайте также:  Какие свойства иформации есть

Енохович, А.С. Справочник по физике / А.С. Енохович. – М.: Просвещение, 1978.

Коэльо, П. Подобно реке… / П. Коэльо. – Клуб семейного досуга, 2014.

Осипенко, В. И. История карандаша / В.И. Осипенко // Юный художник. – 2005. — № 2. — С. 12-14.

Перышкин, А.В. Учебное пособие. Физика 7 / А.В. Перышкин. – М.: Просвещение, 2017.

Ушаков, Д.Н. Большой толковый словарь современного русского языка: 180000 слов и словосочетаний / Д. Н. Ушаков. – М.: Альта-Принт, 2008.

Графен. [Электронный ресурс]. Статья. URL: //hi-news.ru/tag/grafen

Просмотров работы: 778

Источник

Графи́т (от др.-греч. γράφω «записывать, писать») — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые, чешуйчатые. Образует листоватые и округлые радиально-лучистые агрегаты, реже — агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто треугольная штриховка на плоскостях (0001). Природный графит имеет разновидности: плотнокристаллические (жильный), кристаллический(чешуйчатый), скрытокристаллический (аморфный, микрокристаллический) и различается по размерам кристаллов.

История[править | править код]

Графит известен с древних времён, однако точных сведений об истории его использования получить не удаётся из-за сходства красящих свойств с другими минералами, например, молибденитом. Одним из наиболее ранних свидетельств применения графита является глиняная посуда культуры Боян-Марица (4000 лет до н. э.), раскрашенная с помощью этого минерала[1]. Название «графит» предложено в 1789 году Абраамом Вернером, встречаются также названия «чёрный свинец» (англ. black lead), «карбидное железо», «серебристый свинец»[2].

Физические свойства[править | править код]

Хорошо проводит электрический ток. Обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного более твёрдым и очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 100 до 354,1 Вт/(м·К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры[3].

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Теплоёмкость графита в диапазоне температур 300÷3000 К хорошо согласуется с дебаевской моделью[4]. В высокотемпературной области после Т>3500K наблюдается аномальное поведение теплоёмкости графита аналогично алмазу: экспериментальные данные по теплоёмкости резко отклоняются вверх от нормальной (дебаевской) кривой и аппроксимируются экспоненциальной функцией[5][6][7], что обуславливается больцмановской компонентой поглощения тепла кристаллической решеткой[8].

Пределы температуры плавления — 3845—3890 °C, кипение начинается при 4200 °C[источник не указан 394 дня]. Во время сжигания 1 кг графита выделяется 7832 ккал тепла.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Химические свойства[править | править код]

Со многими веществами (щелочными металлами, солями) образует соединения включения.

Реагирует при высокой температуре с кислородом, сгорая до углекислого газа. Фторированием в контролируемых условиях можно получить (CF)x.

В неокисляющих кислотах не растворяется.

Структура[править | править код]

Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m).
Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Условия нахождения в природе[править | править код]

Сопутствующие минералы: пирит, гранаты, шпинель.
Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных
полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн, Курейское месторождение скрытокристаллического (аморфного) графита, Ногинское месторождение (в настоящее время не разрабатывается). Акцессорный минерал метеоритов.
С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Искусственный синтез[править | править код]

Искусственный графит получают разными способами:

  • Ачесоновский графит: нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит: термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пиролитический графит: пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит: выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит: образуется при термическом разложении карбидов.

Переработка[править | править код]

Переработкой графита получают различные марки графита и изделия из них.

Товарные сорта графита получают обогащением графитовых руд. В зависимости от степени очистки графитовые концентраты классифицируют на промышленные марки по областям применения, каждая из которых выдвигает специфические требования к физико-химическим и технологическим свойствам графитов.

В свете последних открытий российских учёных появилась перспектива получения из графитовых руд золота и платиноидов.

Переработка графита в терморасширенный графит[править | править код]

На первом этапе исходный кристаллический графит окисляют. Окисление сводится к внедрению молекул и ионов серной или азотной кислоты в присутствии окислителя (пероксид водорода, перманганат калия и др.) между слоями кристаллической решетки графита. Окисленный графит отмывают и сушат. Затем окисленный графит подвергают термообработке до Т=1000 °C со скоростью 400—600 °C/с. Благодаря чрезвычайно высокой скорости нагрева происходит резкое выделение газообразных продуктов разложения внедренной серной кислоты из кристаллической решетки графита. Газообразные продукты создают большое (до 300—400 атм) расклинивающее давление в межкристаллитном пространстве, при этом образуется терморасширенный графит, отличающийся высокой удельной поверхностью и низкой насыпной плотностью. В полученном материале остается некоторое количество серы при применении сернокислой технологии. Далее полученный терморасширенный графит прокатывают, иногда армируют, добавляют присадки и прессуют для получения изделий.

Переработка графита для получения различных марок искусственного графита[править | править код]

Для производства искусственного графита используют в основном нефтяной кокс как наполнитель и каменноугольный пек как связующее. Для конструкционных марок графита в качестве добавок к наполнителю применяют природный графит и сажу. Взамен каменноугольного пека как связующего или пропитывающего вещества используют некоторые синтетические смолы, например, фурановые или фенольные.

Читайте также:  Какое свойство воздуха позволяет нам видеть вокруг нас предметы

Производство искусственного графита складывается из следующих основных технологических этапов:

  • подготовки кокса к производству (предварительного дробления, прокаливания, размола и рассева кокса по фракциям);
  • подготовки связующего;
  • приготовления углеродной массы (дозировки и смешивания кокса со связующим);
  • формования так называемых «зелёных» (необожжённых) заготовок в глухую матрицу или через мундштук прошивного пресса;
  • обжига заготовок;
  • графитации заготовок;
  • механической обработки заготовок до размеров изделий.

Кокс дробят до величин кусков 30—40 мм, затем прокаливают в специальных прокалочных печах при 1300 °C. При прокаливании достигается термическая стабильность кокса, уменьшается содержание в нём летучих веществ, увеличиваются его плотность, электро- и теплопроводность. После прокаливания кокс размалывают до необходимой крупности. Порошки кокса дозируют и смешивают с пеком в смесильных машинах при 90—130 °C.

В смесильную машину вначале загружают сухие компоненты, а затем добавляют жидкий пек. После смешивания массу равномерно охлаждают до температуры прессования (80—100 °C). Заготовки прессуют или методом выдавливания массы через мундштук, или в пресс-форме. При прессовании холодных порошков изменяют технологию подготовки помола и смешения.

Для карбонизации связующего и скрепления отдельных зёрен в монолитный материал заготовки обжигают в многокамерных газовых печах при температуре 800—1200 °C. Продолжительность цикла обжига (нагрев и охлаждение) составляет 3-5 недель в зависимости от размера и плотности заготовок. Графитация — окончательная термическая обработка — превращает углеродный материал в графит. Графитацию проводят в печах сопротивления Ачесона или в печах прямого нагрева Кастнера при температурах 2400—3000 °C. При графитировании углеродистых нефтяных заготовок идет процесс укрупнения кристаллов углерода. Из мелкокристаллического «аморфного» углерода получается крупнокристаллический графит, атомная решетка которого ничем не отличается от атомной решетки природного графита.

Некоторые изменения технологического процесса получения искусственного графита зависят от требуемых свойств конечного материала. Так, для получения более плотного материала углеродные заготовки пропитывают (после обжига) в автоклавах один или несколько раз пеком с последующим обжигом после каждой пропитки и графитацией в конце всего технологического процесса. Для получения особо чистых материалов графитацию проводят одновременно с газовой очисткой в атмосфере хлора.

Переработка графита для получения композиционных материалов[править | править код]

Антифрикционные углеродные материалы изготавливают следующих марок: обожженный антифрикционный материал марки АО, графитированный антифрикционный материал марки АГ, антифрикционные материалы, пропитанные баббитом, оловом и свинцом марок АО-1500Б83, АО 1500СО5, АГ-1500Б83, АГ-1500СО5, Нигран, Химанит и графитопластовые материалы марок АФГМ, АФГ- 80ВС, 7В-2А, КВ, КМ, АМС.

Антифрикционные углеродные материалы изготавливают из непрокаленного нефтяного кокса, каменноугольного пека с добавкой природного графита. Для получения плотного непроницаемого антифрикционного материала применяют пропитку его металлами. Таким методом получают антифрикционные материалы марок АГ-1500 83, АГ-1500СО5 АМГ-600Б83, АМГ-600СО5 и им подобные. Допустимая рабочая температура на воздухе и в газовых средах, содержащих кислород для АО — 250—300 °C, для АГ — 300 °C (в восстановительных и нейтральных средах 1500 и 2500 °C соответственно). Углеродные антифрикционные материалы химически стойки во многих агрессивных газовых и жидких средах. Они стойки почти во всех кислотах (до температуры кипения кислоты), в растворах солей, во всех органических растворителях и ограниченно стойки в концентрированных растворах едких щелочей.

Графит как золотосодержащее сырьё[править | править код]

Содержание найденного с помощью ионной масс-спектрометрии золота до десятков раз превышает содержание, выявляемое ранее при помощи химического анализа. В изученных российскими учёными пробах графита содержание золота было до 17,8 г/т — это уровень богатых золотых приисков.
О перспективности добычи золота из графитовых руд говорит то, что графитовые месторождения данного типа (позднедокембрийского-раннепалеозойского возраста) широко распространены и в России, и в мире. Они есть в Европе, США, Австралии, Африке — в сущности, легче перечислить где их нет. При этом практически все они когда-то разрабатывались, а сегодня находятся в хорошо обжитых местах, с развитой инфраструктурой, в том числе промышленной. Следовательно, для запуска добычи в них золота и других благородных металлов не нужно затевать стройку на пустом месте, не нужно бороться с суровыми условиями заполярной тундры или пустыни. Это облегчает, ускоряет, а главное, удешевляет производство[9].

Применение[править | править код]

Сувенирный графитовый блок.

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
  • электродов, нагревательных элементов — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие — его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде — это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.
  • твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках.
  • наполнитель пластмасс.
  • замедлитель нейтронов в ядерных реакторах.
  • компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
  • для получения синтетических алмазов.
  • в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа.[10][11]
  • для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт.
  • для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.
  • как токопроводящий компонент высокоомных токопроводящих клеёв.

Примечания[править | править код]

  1. Boardman, John. The Cambridge ancient history. — Vol. 3. — P. 31—32. — ISBN 0521224969. Архивная копия от 24 декабря 2013 на Wayback Machine
  2. Углерод — статья из энциклопедии «Кругосвет»
  3. ↑ Графит. Справочный материал
  4. ↑ Малик В. Р., Ефимович Л. П. Термодинамические функции алмаза и графита в интервале температур 300÷3000 К.//Сверхтвёрдые материалы, 1983, № 3, с. 27—30.
  5. ↑ Hove J.E. Some physical properties of graphite as affected by high temperature and irradiation.//in: Proc.First SCI Conf. on Indastrial Carbons and Graphites (Soc.Chem.Ind.,London.,1958, p.501-507)
  6. ↑ Rasor N.S., Mc Clelland J.D.J. //J.Phys.Chem.Solids, 1960, v.15, № 1—2, p. 17—20
  7. ↑ Sheindlin A.Ye., Belevich I.S., Kozhevnikov I.G.//Physics of Heat at High Temperatures, 1972, 10, p.907
  8. Андреев В. Д. Избранные проблемы теоретической физики. — Киев: Аванпост-Прим,. — 2012.
  9. ↑ Нам нано золото: российские учёные открыли новый вид месторождений золота | Нанотехнологии Nanonewsnet. www.nanonewsnet.ru. Дата обращения 1 декабря 2015.
  10. R. V. Lapshin. Automatic lateral calibration of tunneling microscope scanners (итал.) // Review of Scientific Instruments (англ.)русск. : diario. — USA: AIP, 1998. — V. 69, n. 9. — P. 3268—3276. — ISSN 0034-6748. — doi:10.1063/1.1149091.
  11. R. V. Lapshin. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode (англ.) // Applied Surface Science : journal. — Netherlands: Elsevier B. V., 2019. — Vol. 470. — P. 1122—1129. — ISSN 0169-4332. — doi:10.1016/j.apsusc.2018.10.149.

Литература[править | править код]

  • Графит / Р. В. Лобзова // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопед